Skip to main content
Log in

Mitochondrial genes are involved in the fertility transformation of the thermosensitive male-sterile line YS3038 in wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Heterosis can improve the stress resistance, quality, and yield of crops, and the male sterility of wheat can be utilized to accelerate the breeding process of hybrid. To determine whether mitochondrial genes are involved in the fertility of K-type cytoplasmic male-sterile (CMS) line and the YS-type thermosensitive male-sterile (TMS) line in wheat, we sequenced and assembled the mitochondrial genomes of K519A, 519B, and YS3038 by next-generation sequencing (NGS). The non-synonymous mutations were analyzed, and the first-generation sequencing was conducted to verify the non-synonymous mutation sites. Furthermore, the expression patterns of genes with non-synonymous mutations were analyzed. Finally, the candidate genes were silenced by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) to test the functions of the candidate genes. The results revealed that the mitochondrial genomes of K519A, 519B, and YS3038 were 420,543, 433,560, and 452,567 bp in length, respectively. Besides, 33, 31, and 37 protein-coding genes were identified in K519A, 519B, and YS3038, respectively. There were 14 protein-coding genes and 83 open reading frame (ORF) sequences that differed between K519A and 519B and 10 protein-coding genes and 122 ORF sequences that differed between K519A and YS3038. At the binucleate stage, seven genes (nad6, ORF256, ORF216, ORF138, atp6, nad3, and cox1) were downregulated in K519A compared with 519B, and 10 genes (nad6, atp6, cox3, atp8, nad3, cox1, rps3, ORF216, ORF138, and ORF224) were downregulated in YS3038 compared with K519A. Besides, six genes (nad6, ORF138, cox3, cox1, rps3, and ORF224) were downregulated under fertile conditions relative to sterile conditions in YS3038. Gene silencing analysis showed that the silencing of cox1 significantly reduced the seed setting rate of YS3038, indicating that the cox1 gene may be involved in the fertility transformation of YS3038.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The sequences of mitochondrial genomes have been deposited in the GenBank database at the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/genbank/) and can be accessed by the accession number SUB8115657.

Abbreviations

CMS:

Cytoplasmic male sterility

FGS:

First-generation sequencing

NGS:

Next-generation sequencing

TMS:

Thermosensitive male sterility

References

  • Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12(2):18

    Article  CAS  Google Scholar 

  • Aslam S, Khan SM, Saleem M, Qureshi AS, Khan A, Islam M, Khan SM (2010) Heterosis for the improvement of oil quality in sunflower (Helianthus annuus L.). Pak J Bot 42(2):1003–1008

    Google Scholar 

  • Bachmann L, Fromm B, Luciana P, Goeger W (2016) The mitochondrial genome of the egg-laying flatworm Aglaiogyrodactylus forficulatus (Platyhelminthes: Monogenoidea). Parasites Vectors 9(1):285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belliard G, Vedel F, Pelletier G (1979) Mitochondrial recombination in cytoplasmic hybrids of Nicotiana tabacum by protoplast fusion. Nature 281(5730):401–403

    Article  CAS  Google Scholar 

  • Bergman P, Edqvist J, Farbos I, Glimelius K (2000) Male-sterile tobacco displays abnormal mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol Biol 42(3):531–544

    Article  CAS  PubMed  Google Scholar 

  • Bonhomme S, Budar FO, Lancelin D, Small I, Defrance MC, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol Gen Genet 235(2–3):340–348

    Article  CAS  PubMed  Google Scholar 

  • Chen XF, Liang CY (1991) Relation of energy metabolism in HPGMR abortive anthers and accumulation of H2O2 to male sterility. Plant Physiol Commun 217(2):161–173

    Google Scholar 

  • Chen L, Liu Y (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65(1):579–606

    Article  CAS  PubMed  Google Scholar 

  • Christoph H, Lutz B, Bastien C (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res 13:e129–e129

    Google Scholar 

  • Cui X, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272(5266):1334–1336

    Article  CAS  PubMed  Google Scholar 

  • Darling AE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieterich JH, Braun HP, Schmitz UK (2003) Alloplasmic male sterility in Brassica napus (CMS ‘Tournefortii-Stiewe’) is associated with a special gene arrangement around a novel atp9 gene. Mol Genet Genomics 269(6):723–731

    Article  CAS  PubMed  Google Scholar 

  • Ding D, Wang Y, Han M, Fu Z, Li W, Liu Z, Hu Y, Tang J (2012) MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS ONE 7(6):1–9

    Article  CAS  Google Scholar 

  • Dong HK, Kim BD (2006) The organization of mitochondrial atp6 gene region in male fertile and CMS lines of pepper (Capsicum annuum L.). Curr Genet 49(1):59–67

    Article  CAS  Google Scholar 

  • Feagin JE, Gardner MJ, Williamson DH, Wilson RJM (1991) The putative mitochondrial genome of plasmodium falciparum. J Eukaryotic Microbiol 38(3):243–245

    CAS  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7(3):254–261

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Toriyama K (2008) Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility. Plant Cell Physiol 49(10):1484–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grelon M, Budar F, Bonhomme S, Pelletier G (1994) Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet 243(5):540

    Article  CAS  PubMed  Google Scholar 

  • Groenenberg DS, Pirovano W, Gittenberger E, Schilthuizen M (2012) The complete mitogenome of Cylindrus obtusus (Helicidae, Ariantinae) using Illumina next generation sequencing. BMC Genomics 13(1):114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach. Nucleic Acids Res 41(13):129

    Article  CAS  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:154–169

    Article  Google Scholar 

  • Hernould M, Suharsono S, Litvak S, Araya A, Mouras A (1993) Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. P Natl Acad Sci USA 90(6):2370–2374

    Article  CAS  Google Scholar 

  • Hirokazu H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31(20):5907–5916

    Article  Google Scholar 

  • Hiromori Akagi MS (1994) Chou Shinjyo, Hiroaki Shimada, Tatsuhito Fujimura: A unique sequence located downstream from the rice mitochondrialatp6 may cause male sterility. Curr Genet 25:52

    Article  Google Scholar 

  • Hochholdinger F, Baldauf JA (2018) Heterosis in plants. Curr Biol 28(18):1089–1092

    Article  CAS  Google Scholar 

  • Howad W, Kempken F (1997) Cell type-specific loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. P Natl Acad Sci USA 94(20):11090–11095

    Article  CAS  Google Scholar 

  • Ichinose M, Sugita M (2017) RNA editing and its molecular mechanism in plant organelles. Genes 8(1):1–5

    Google Scholar 

  • Itoh T, Martin W, Nei M (2002) Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts. P Natl Acad Sci USA 99(20):12944–12948

    Article  CAS  Google Scholar 

  • Kadowaki KI, Suzuki T, Kazama S (1990) A chimeric gene containing the 5’ portion of atp6 is associated with cytoplasmic male-sterility of rice. Mol Genet Genomics 224(1):10–16

    Article  CAS  Google Scholar 

  • Kazama T, Nakamura T, Watanabe M, Sugita M, Toriyama K (2011) Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice. Plant J 67(4):619–628

    Article  CAS  Google Scholar 

  • Kitazaki K, Kubo T (2010) Cost of having the largest mitochondrial genome: evolutionary mechanism of plant mitochondrial genome. J Bot 2010:1–12

    Article  CAS  Google Scholar 

  • Kmiec B, Woloszynska M, Janska H (2006) Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 50(3):149–159

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Tan YP, Chen ZY, Li SQ, Zhu YG (2006) Study on the editing sites in transcripts of functional genes of HL-cytoplasmic male sterility rice mitochondria during microgametogenesis. J Wuhan Bot Res 24(2):95–99

    CAS  Google Scholar 

  • Kovacs B, Mathijs E, Freibauer A, Brunori G, Damianova Z, Faroult E, Gomis JG, Obrien L, Treyer S (2011) Sustainable food consumption and production in a resource-constrained world. EuroChoices 10(2):38–43

    Google Scholar 

  • Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8(1):5–14

    Article  CAS  PubMed  Google Scholar 

  • Landgren M, Zetterstrand M, Sundberg E, Glimelius K (1996) Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3’ of the atp6 gene and a 32 kDa protein. Plant Mol Biol 32(5):879–890

    Article  CAS  PubMed  Google Scholar 

  • Langmead B (2012) Salzberg S L : Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laser KD, Lersten NR (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev 38(3):425–454

    Article  Google Scholar 

  • Li H, Yang Q, Gao L, Ming Z, Ni Z, Zhang Y (2017) Identification of heterosis-associated stable QTLs for ear-weight-related traits in an elite maize hybrid zhengdan 958 by design III. Front Plant Sci 8:561

    PubMed  PubMed Central  Google Scholar 

  • Liao XF, Diao Y, Qiu AH, Zhao YH, Zhou JB, Chen P, Zhou RY (2016) Cloning and expression analysis of cox1 in cytoplasmic male sterility line UG93A and its maintainer line UG93B of kenaf. J China Agr U 21(3):36–45

    Google Scholar 

  • Lin C, Zhang C, Zhao H, Xing S, Wang Y, Liu X, Yuan C, Zhao L, Dong Y (2014) Sequencing of the chloroplast genomes of cytoplasmic male-sterile and male-fertile lines of soybean and identification of polymorphic markers. Plant Sci 229:208–214

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Cui P, Zhan KH, Lin Q, Zhuo GY, Guo XL, Ding F, Yang WL, Liu DC, Hu SN, Yu J, Zhang AM (2011) Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genomics 12(1):163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo D, Xu H, Liu Z, Guo J, Liu YG (2013a) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45(5):573

    Article  CAS  PubMed  Google Scholar 

  • Luo D, Hong X, Liu Z, Guo J, Liu Y-G (2013b) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45(5):573–577

    Article  CAS  PubMed  Google Scholar 

  • Marechal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186(2):299–317

    Article  CAS  PubMed  Google Scholar 

  • Meyer M, Kircher M (2010) Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010(6):5448

    Article  Google Scholar 

  • Nieminen AL (2003) Apoptosis and necrosis in health and disease: role of mitochondria. Int Rev Cytol 224:29–55

    Article  CAS  PubMed  Google Scholar 

  • Noyszewski AK, Ghavami F, Alnemer LM, Soltani A, Gu YQ, Huo NX, Meinhardt S, Kianian PM, Kianian SF (2014) Accelerated evolution of the mitochondrial genome in an alloplasmic line of durum wheat. BMC Genomics 15(1):67

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. P Natl Acad Sci USA 97(13):6960–6966

    Article  CAS  Google Scholar 

  • Pruitt KD, Hanson MR (1991) Splicing of the Petunia cytochrome oxidase subunit II intron. Curr Genet 19(3):191–197

    Article  CAS  PubMed  Google Scholar 

  • Rajaram S (2001) Prospects and promise of wheat breeding in the 21st century. Euphytica 119(1–2):3–15

    Article  Google Scholar 

  • Rurek M, Szklarczyk M, Adamczyk N, Michalik B, Augustyniak H (2001) Differences in editing of mitochondrial nad3 transcripts from CMS and fertile carrots. Acta Biochim Pol 48(3):711–717

    Article  CAS  PubMed  Google Scholar 

  • Ryan W, Delphine F, Reif JC, Melissa G, Takashi O, Viktor K, Peter L (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64(18):5411–5428

    Article  CAS  Google Scholar 

  • Sabar M, Gagliardi D, Balk J, Leaver CJ (n.d.) ORFB is a subunit of F1F(O)-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. Embo Rep 4(4):381–386

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3(5):175–180

    Article  Google Scholar 

  • Shen JX, Fu TD, Yang GS, Ma CZ, Tu JX (2005) Genetic analysis of rapeseed self-incompatibility lines reveals significant heterosis of different patterns for yield and oil content traits. Plant Breeding 124(2):111–116

    Article  CAS  Google Scholar 

  • Small I, Suffolk RA, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58(1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Stahl R, Sun S, Lhomme Y, Ketela T, Brown GG (1994) RNA editing of transcripts of a chimeric mitochondrial gene associated with cytoplasmic male-sterility in Brassica. Nucleic Acids Res 22(11):2109–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomic 272(6):603–15

    Article  CAS  Google Scholar 

  • Sun XD, Zhou SF, Meng FL, Liu SQ (2012) De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep 31(10):1823–1828

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk M, Oczkowski M, Augustyniak H, BoRner T, Linke B, Michalik B (2000) Organisation and expression of mitochondrial atp9 genes from CMS and fertile carrots. Theor Appl Genet 100(2):263–270

    Article  CAS  Google Scholar 

  • Van Dingenen J, Blomme J, Gonzalez N, Inze D (2016) Plants grow with a little help from their organelle friends. J Exp Bot 67(22):6267–6281

    Article  PubMed  CAS  Google Scholar 

  • Vedel F (1999) Lalanne é, Sabar M, Chétrit P, Paepe RD: The mitochondrial respiratory chain and ATP synthase complexes: composition, structure and mutational studies. Plant Physiol Bioch 37(9):629–643

    Article  CAS  Google Scholar 

  • Wang X, Zhou R (1986) The relationship between the ATP content in anthers of maize and sorghum and cytoplasmic male-sterility. Acta Agron Sin 12(3):178–180

    Google Scholar 

  • Wang Z, Zou YJ, Li X, Zhang QY, Chen L, Wu H, Su DH, Chen YL, Guo JX, Luo D (2006) Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA Silencing. Plant Cell 18(3):676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Feng C, O’Connell MA, Stewart JM, Zhang J (2010) RFLP analysis of mitochondrial DNA in two cytoplasmic male sterility systems (CMS-D2 and CMS-D8) of cotton. Euphytica 172(1):93–99

    Article  CAS  Google Scholar 

  • Wang K, Gao F, Ji Y, Liu Y, Dan Z, Yang P, Zhu Y, Li S (2013) ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex III in Honglian cytoplasmic male sterile rice. New Phytol 198(2):408–418

    Article  CAS  PubMed  Google Scholar 

  • Wang XQ, Yang WL, Pu MY, Liu DC, Sun JZ, Zhang WD, Zhang AM, Gao QR (2015) Comparative analysis of mitochondrial genes from wheat K- and V-type cytoplasmic male sterility lines. Mol Plant Breeding 13(8):1673–1682

    CAS  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25(3):793–803

    Article  CAS  PubMed  Google Scholar 

  • Warmke HE, Lee SLJ (1978) Pollen abortion in T cytoplasmic male-sterile corn (Zea mays): a suggested mechanism. Ence 200(4341):561–563

    Article  CAS  Google Scholar 

  • Williams ST, Foster PG, Littlewood D (2014) The complete mitochondrial genome of a turbinid vetigastropod from MiSeq Illumina sequencing of genomic DNA and steps towards a resolved gastropod phylogeny. Gene 533(1):38–47

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang M, Yu J (2007) Alterations of RNA editing for the mitochondrial atp9 gene in a new orf220-type cytoplasmic male-sterile line of Stem Mustard (Brassica juncea var. tumida). J Integr Plant Biol 49(5):672–677

    Article  CAS  Google Scholar 

  • Yasunari O, Yukiko Y, Koji M, Akira K, Toru T, Takashi S, Naohiko M, Shuhei N, Chiharu N, Naoki M (2005) Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res 33(19):6235–6250

    Article  CAS  Google Scholar 

  • Yi P, Wang L, Sun QP, Zhu YG (2002) Study on the editing sites in the transcript of atp6 gene of HL-rice mitochondria. Prog Biochem Biophys 29(5):729–733

    CAS  Google Scholar 

  • Zhang D, Li Z, Yu S, Zhang F, Yu Y, Zhao X, Wang W (2013) Study on RNA editing in Chinese Cabbage CMS96 and maintainer line. Acta Agriculturae Boreali Sinica 28(6):42–52

    Google Scholar 

  • Zhao T, Zhu TY, Liu QY, Zhang ML (2009) SNP in tobacco mitochondrial gene atp6 and its correlation with CMS. Acta Agron Sin 35(9):1655–1661

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Biomarker Technologies (Beijing, China) for helping with transcriptome sequencing and technical assistance.

Funding

This word was supported by the National Key Research and Development Program of China (2016YFD0101602).

Author information

Authors and Affiliations

Authors

Contributions

LM and QD designed and supervised the study and wrote the paper. YH planned and performed the experiments, analyzed the data, and wrote the manuscript. YG performed the experiments and analyzed the data. HZ and XZ performed the experiments. All the authors revised and approved the final manuscript.

Corresponding authors

Correspondence to Qin Ding or Lingjian Ma.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1.

Structural annotations of mitochondrial genome in K519A. The transcriptional direction of intra-annular genes is clockwise, while that of exocyclic genes is opposite. Different functional genes are color-coded. The built-in gray histogram shows the GC content of the genome, and the intermediate gray line is the 50% threshold line. (PDF 1469 KB)

Fig. S2.

Structural annotation of mitochondrial genome in 519B. The transcriptional direction of intra-annular genes is clockwise, while that of exocyclic genes is opposite. Different functional genes are color-coded. The built-in gray histogram shows the GC content of the genome, and the intermediate gray line is the 50% threshold line. (PDF 1468 KB)

Fig. S3.

Structural annotation of mitochondrial genome in YS3038. The transcriptional direction of intra-annular genes is clockwise, while that of exocyclic genes is opposite. Different functional genes are color-coded. The built-in gray histogram shows the GC content of the genome, and the intermediate gray line is the 50% threshold line. (PDF 2469 KB)

Supplementary file4 (XLSX 15 KB)

Supplementary file5 (XLSX 15 KB)

Supplementary file6 (XLSX 64 KB)

Supplementary file7 (RAR 2980 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Gao, Y., Zhou, H. et al. Mitochondrial genes are involved in the fertility transformation of the thermosensitive male-sterile line YS3038 in wheat. Mol Breeding 41, 61 (2021). https://doi.org/10.1007/s11032-021-01252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-021-01252-x

Keywords

Navigation