Skip to main content
Log in

Assay development and marker validation for marker assisted selection of Fusarium oxysporum f. sp. niveum race 1 in watermelon

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Fusarium wilt, Fusarium oxysporum f. sp. niveum (FON), of watermelon (Citrullus lanatus) is a fungal pathogen that causes significant yield losses in the US watermelon industry. FON damages watermelon through invasion of the root system and remains a difficult pathogen to manage due to its long-lasting survival spores which persist in the soil. Chemical control options for this pathogen are lacking, making development of genetic resistance the best option. There are four known races of FON (0, 1, 2, and 3) which are distinguished based on their pathogenicity of differential cultivars. Most modern cultivar releases have FON race 1 (FON-1) resistance, which has been mapped on the end of chromosome 1. Application of marker assisted selection (MAS) would improve the efficiency of FON-1 resistance breeding. In order to identify markers for selection in the FON-1 region, the QTL-seq method was utilized on an F2 population segregating for FON-1 resistance. Single nucleotide polymorphism (SNP) markers in the region were developed into Kompetitive allele-specific PCR (KASP™) assays and tested for trait association on the segregating F2:3 population. Marker validation was done using an F2 population from a cross between FON-1 susceptible “New Hampshire Midget” and FON-1-resistant “Calhoun Gray.” Further validation on a panel of susceptible and resistant cultivars and Plant Introductions identified SNP marker UGA1_502161 as a useful marker for selection of FON-1 resistance from Calhoun Gray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong GM, Armstrong JK (1978) Formae speciales and races of Fusarium oxysporum causing wilts of the Cucurbitaceae. Phytopathology 68:19–28

    Article  Google Scholar 

  • Brusca J, Zhang X (2012) Watermelon pollenizer SP-6. Google Patents

  • Correll JC (1991) The relationship between formae speciales, races, and vegetative compatibility groups in Fusarium oxysporum. Am Phytopathol Soc 81(9):1061–1064

    Google Scholar 

  • Crall JM (1981a) Fifty years of watermelon breeding at ARC Leesburg. Florida Agricultural Experiment Stations Series 94:156–158

  • Crall JM (1981b) Sugarlee: an early, high quality, disease-resistant watermelon variety for Florida commercial growers. University of Florida Agricultural Experiment Station Series 277:1–5

  • Elmstrom GW, Hopkins DL (1981) Resistance of watermelon cultivars to fusarium wilt. Plant Dis 65(10):825–827. https://doi.org/10.1094/PD-65-825

    Article  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58. https://doi.org/10.1038/ng.2470

    Article  CAS  PubMed  Google Scholar 

  • Hall CV (1963) Crimson sweet: a new disease resistant watermelon. Kansas Agricultural Experiment Station Series 347:1–3

  • Holdsworth WL, LaPlant KE, Bell DC, Jahn MM, Mazourek M (2016) Cultivar-based introgression mapping reveals wild species-derived Pm-0, the major powdery mildew resistance locus in squash. PLoS One 11(12):1–20. https://doi.org/10.1371/journal.pone.0167715

    Article  CAS  Google Scholar 

  • Houterman PM, Speijer D, Dekker HL, De Koster CG, Cornelissen BJ, Rep M (2007) The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol Plant Pathol 8(2):215–221. https://doi.org/10.1111/j.1364-3703.2007.00384.x

    Article  CAS  PubMed  Google Scholar 

  • King Z, Serrano J, Boerma HR, Li Z (2014) Non-toxic and efficient DNA extractions for soybean leaf and seed chips for high-throughput and large-scale genotyping. Biotechnol 36:1875–1879. https://doi.org/10.1007/s10529-014-1548-8

    Article  CAS  Google Scholar 

  • Lambel S, Lanini B, Vivoda E, Fauve J, Wechter WP, Harris-Shultz KR, Massey L, Levi A (2014) A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery. Theor Appl Genet 127:2105–2115. https://doi.org/10.1007/s00122-014-2363-2

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  Google Scholar 

  • Martyn RD (2014) Fusarium wilt of watermelon: 120 years of research. Hortic Rev 42:349–442

    Google Scholar 

  • Martyn RD, Netzer D (1991) Resistance to races 0, 1, and 2 of fusarium wilt of watermelon in Citrullus sp. PI-296341-FR. Hortic Sci 26(4):429–432

    Google Scholar 

  • Menda N, Strickler SR, Edwards JD, Bombarely A, Dunham DM, Martin GB, Meja L, Hutton SF, Havey MJ, Maxwell DP, Muellar LA (2014) Analysis of wild-species introgressions in tomato inbreds uncover ancestral origins. BMC Plant Biol 14(287):1–16

    Google Scholar 

  • Meru G (2014) Genetic mapping of resistance to fusarium wilt and seed oil traits in watermelon. Dissertation, University of Georgia

  • Meru G, McGregor C (2016) Genotyping by sequencing for SNP discovery and genetic mappng of resistance to race 1 of Fusarium oxysporum in watermelon. Sci Hortic 209:31–40

    Article  CAS  Google Scholar 

  • Michelmore R (2000) Genomic approaches to plant disease resistance. Curr Opin Plant Biol 3(2):125–131

    Article  CAS  Google Scholar 

  • Milne I, Shaw P, Stephen G, Bayer M, Cardle L, Thomas WTB, Flavel AJ, Marshall D (2010) Flapjack—graphical genotype visualization. Bioinformatics 26(24):3133–3134

    Article  CAS  Google Scholar 

  • Niu X, Zhao X, Ling KS, Levi A, Sun Y, Fan M (2016) The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum—watermelon pathosystem. Sci Rep 6:1–7. https://doi.org/10.1038/srep28146

    Article  CAS  Google Scholar 

  • Norton JD, Cosper RD, Smith DA, Rymal KS (1983) AU-Jubulent and AU-producer: quality, disease-resistant watermelon varieties for the south. Alabama Agricultural Experiment Station Series 280:1–12

  • Orton WA (1907) On methods of breeding for disease-resistance. Proc Soc Hortic Sci 5:1–31

    Google Scholar 

  • Ren Y, Di J, Gong G, Zhang H, Guo S, Zhang J, Xu Y (2015) Genetic analysis and chromosome mapping of resistance to f. sp. (FON) race 1 and race 2 in watermelon (L.). Mol Breed 35(9):183. https://doi.org/10.1007/s11032-015-0375-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt SM, Houterman PM, Schreiver I, Ma L, Amyotte S, Chellappan B, Boeren S, Takken FL, Rep M (2013) MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics 14(119):119. https://doi.org/10.1186/1471-2164-14-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2013) Single nucleotide polymorphism genotyping using Kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33(1):1–14. https://doi.org/10.1007/s11032-013-9917-x

    Article  CAS  Google Scholar 

  • Shi Z, Bachleda N, Pham AT, Bilyeu K, Shannon G, Nguyen H, Li Z (2015) High-throughput and functional SNP detection assays for oleic and linolenic acids in soybean. Mol Breed 35(8). https://doi.org/10.1007/s11032-015-0368-4

  • Smith EF (1894) The watermelon disease of the south. Proc Am Assoc Adv Sci 43:289–290

    Google Scholar 

  • Sun Y, Wang M, Li Y, Gu Z, Ling N, Shen Q, Guo S (2017) Wilted cucumber plants infected by Fusarium oxysporum f. sp. cucumerinum do not suffer from water shortage. Ann Bot 120(3):427–436. https://doi.org/10.1093/aob/mcx065

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74(1):174–183. https://doi.org/10.1111/tpj.12105

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–821

    Article  CAS  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:71–74. https://doi.org/10.1093/nar/gkm306

    Article  Google Scholar 

  • van der Beek JG, Verkerk R, Zabel P, Lindhout P (1992) Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1. Theor Appl Genet 84(1–2):106–112

    Article  Google Scholar 

  • Wehner TC (2008) Watermelon. In: Prohens J, Nuez F (eds) Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. Springer, New York, pp 381–418

    Chapter  Google Scholar 

  • Zhang X (2008) Watermelon pollenizer SP-4. Google Patents

  • Zhou XG, Everts KL, Bruton BD (2010) Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing fusarium wilt in watermelon. Plant Dis 94(1):92–98

    Article  Google Scholar 

Download references

Acknowledgments

This work was in part supported by the United States Department of Agriculture Specialty Crop Research Initiative Award No. 2014-51181-22471.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Ann Fall.

Electronic supplementary material

ESM 1

(DOCX 96 kb)

Online Resource 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fall, L.A., Clevenger, J. & McGregor, C. Assay development and marker validation for marker assisted selection of Fusarium oxysporum f. sp. niveum race 1 in watermelon. Mol Breeding 38, 130 (2018). https://doi.org/10.1007/s11032-018-0890-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0890-2

Keywords

Navigation