Skip to main content

Advertisement

Log in

Medicinal chemistry perspective of JAK inhibitors: synthesis, biological profile, selectivity, and structure activity relationship

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

JAK-STAT signalling pathway was discovered more than quarter century ago. The JAK-STAT pathway protein is considered as one of the crucial hubs for cytokine secretion which mediates activation of different inflammatory, cellular responses and hence involved in different etiological factors. The various etiological factors involved are haematopoiesis, immune fitness, tissue repair, inflammation, apoptosis, and adipogenesis. The presence of the active mutation V617K plays a significant role in the progression of the JAK-STAT pathway-related disease. Consequently, targeting the JAK-STAT pathway could be a promising therapeutic approach for addressing a range of causative factors. In this current review, we provided a comprehensive discussion for the in-detail study of anatomy and physiology of the JAK-STAT pathway which contributes structural domain rearrangement, activation, and negative regulation associated with the downstream signaling pathway, relationship between different cytokines and diseases. This review also discussed the recent development of clinical trial entities. Additionally, this review also provides updates on FDA-approved drugs. In the current investigation, we have classified recently developed small molecule inhibitors of JAK-STAT pathway according to different chemical classes and we emphasized their synthetic routes, biological evaluation, selectivity, and structure–activity relationship.

Graphical abstract

The JAK-STAT pathway is mainly involved in pathological conditions such as Rheumatoid arthritis, Parkinson’s disease, Atopic dermatitis, Myeloproliferative neoplasm, T-cell leukaemia, Systemic lupus erythematosus, Haematological malignancies, and Idiopathic pulmonary fibrosis. The development of JAK-STAT pathway inhibitors mainly focusses on the inhibition of those diseased conditions. The in-depth review mainly describes the synthetic scheme, structure activity relationship, selectivity and biological activity of globally approved drugs along with recent development of small molecule inhibitors containing different heterocyclic scaffolds (pyridine, pyrimidine, imidazole, indole, pyrazole, pyrrole and triazine).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Fig. 6
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Fig. 7

Similar content being viewed by others

Abbreviations

JAK1:

Janus kinase 1

JAK2:

Janus kinase 2

JAK3:

Janus kinase 3

TYK2:

Tyrosine-kinase 2

STAT:

Signal transducer and activator of transcription

IFNs:

Interferons

ILs:

Interleukins

ISGF3:

Interferon-stimulated gene factor 3

FDA:

Food and Drug Administration

RTK-:

Receptor tyrosine kinase

kDa:

Kilodalton

JH:

JAK homology

CNTF:

Ciliary neurotrophic factor

GM-CSF:

Granulocyte macrophage colony-stimulating factor

LIF:

Leukemia inhibitory factor

OSM:

Oncostatin M

CT-1:

Cardiotrophin-1

DNA:

Deoxyribonucleic acid

PDGF:

Platelet-derived growth factor

GH:

Growth hormone

EGF:

Epidermal growth factor

SOCS:

Suppressors of cytokine signaling

PTP:

Protein tyrosine phosphatase

TNF:

Tumor necrosis factor

RA:

Rheumatoid arthritis

VEGF:

Vascular endothelial growth factor

AD:

Atopic dermatitis

PD:

Parkinson’s disease

MHC:

Main histocompatibility complex

AMP:

Antimicrobial peptides

MPN:

Myeloproliferative neoplasm

EPO:

Erythropoietin

TPO:

Thyroid peroxidase

MF:

Myelofibrosis

SLE:

Systemic lupus Erythematosus

ISG:

Immune serum globulin

HM:

Hematological malignancies

IPF:

Idiopathic pulmonary fibrosis

nM:

Nano molar

L-DTTA:

Di-p-toluyl-l-tartaric acid

EMA:

European medicines agency

SEM:

2-(Trimethylsilyl)ethoxy methyl

CDI:

Carbonyldiimidazole

TIPSCl:

Triisopropylsilyl chloride

UK:

United Kingdom

SAR:

Structure activity relationship

DMF-DMA:

N,N-Dimethylformamide dimethyl acetal

DCM:

Dichloromethane

µM:

Micro molar

BTK:

Bruton tyrosine kinase

Reference:s

  1. Darnell JE Jr (1997) STATs and gene regulation. Science 277(5332):1630–16355. https://doi.org/10.1126/science.277.5332.1630

    Article  CAS  PubMed  Google Scholar 

  2. Fu XY, Kessler DS, Veals SA et al (1990) ISGF3, the transcriptional activator induced by interferon alpha, consists of multiple interacting polypeptide chains. Proc Natl Acad Sci USA 87(21):8555–8559. https://doi.org/10.1073/pnas.87.21.8555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilks AF, Harpur AG, Kurban RR et al (1991) Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol 11(4):2057–2065. https://doi.org/10.1128/mcb.11.4.2057-2065.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wilks AF (1989) Two putative protein-tyrosine kinases identified by application of the polymerase chain reaction. Proc Natl Acad Sci USA 86(5):1603–1607. https://doi.org/10.1073/pnas.86.5.1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krolewski JJ, Lee R, Eddy R et al (1990) Identification and chromosomal mapping of new human tyrosine kinase genes. Oncogene 5(3):277–282

    CAS  PubMed  Google Scholar 

  6. Velazquez L, Fellous M, Stark GR et al (1992) A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 70(2):313–322. https://doi.org/10.1016/0092-8674(92)90105-L

    Article  CAS  PubMed  Google Scholar 

  7. Müller M, Briscoe J, Laxton C et al (1993) The protein tyrosine kinase JAK1 complements defects in interferon-α/β and -γ signal transduction. Nature 366(6451):129–135. https://doi.org/10.1038/366129a0

    Article  PubMed  Google Scholar 

  8. Fu XY (1992) A transcription factor with SH2 and SH3 domains is directly activated by an interferon alpha-induced cytoplasmic protein tyrosine kinase(s). Cell 70(2):323–335. https://doi.org/10.1016/0092-8674(92)90106-M

    Article  CAS  PubMed  Google Scholar 

  9. Shuai K, Stark GR, Kerr IM et al (1993) A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261(5129):1744–1746. https://doi.org/10.1126/science.7690989

    Article  CAS  PubMed  Google Scholar 

  10. Hou J, Schindler U, Henzel WJ et al (1994) An interleukin-4-induced transcription factor: IL-4 Stat. Science 265(5179):1701–1706. https://doi.org/10.1126/science.8085155

    Article  CAS  PubMed  Google Scholar 

  11. Zhong Z, Wen Z, Darnell JE Jr (1994) Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc Natl Acad Sci USA 91(11):4806–4810. https://doi.org/10.1073/pnas.91.11.4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu X, Robinson GW, Gouilleux F et al (1995) Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci USA 92(19):8831–8835. https://doi.org/10.1073/pnas.92.19.8831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xin P, Xu X, Deng C et al (2020) The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol 80:106210. https://doi.org/10.1016/j.intimp.2020.106210

    Article  CAS  PubMed  Google Scholar 

  14. Cai B, Cai JP, Luo YL (2015) The specific roles of JAK/STAT signaling pathway in sepsis. Inflammation 38(4):1599–1608. https://doi.org/10.1007/s10753-015-0135-z

    Article  CAS  PubMed  Google Scholar 

  15. O’Shea JJ, Pesu M, Borie DC et al (2004) A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov 3(7):555–564. https://doi.org/10.1038/nrd1441

    Article  CAS  PubMed  Google Scholar 

  16. Jaime-Figueroa JS, De Vicente J, Hermann J et al (2013) Discovery of a series of novel 5H-pyrrolo[2,3-b]pyrazine-2-phenyl ethers, as potent JAK3 kinase inhibitors. Bioorg Med Chem Lett 23(9):2522–2526. https://doi.org/10.1016/j.bmcl.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  17. Speirs C, Williams JJL, Riches K et al (2018) Linking energy sensing to suppression of JAK-STAT signalling: a potential route for repurposing AMPK activators? Pharmacol Res 128:88–100. https://doi.org/10.1016/j.phrs.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  18. Shaposhnikov AV, Komar’kov IF, Lebedeva LA et al (2013) Molecular components of JAK/STAT signaling pathway and its connection with transcription machinery. Mol Biol (Mosk) 47(3):388–397. https://doi.org/10.7868/s0026898413030130

    Article  CAS  PubMed  Google Scholar 

  19. Luo N, Balko JM (2019) Role of JAK-STAT pathway in cancer signaling. In: Badve S, Kumar G (eds) Predictive biomarkers in oncology, 1ST edn. Springer, Cham, pp 311–319

    Chapter  Google Scholar 

  20. Hu X, Li J, Fu M et al (2021) The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 6(1):402. https://doi.org/10.1038/s41392-021-00791-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rodig SJ, Meraz MA, White JM et al (1998) Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93(3):373–383. https://doi.org/10.1016/S0092-8674(00)81166-6

    Article  CAS  PubMed  Google Scholar 

  22. Leonard WJ, O’Shea JJ (1998) Jaks and STATs: biological implications. Annu Rev Immunol 16:293–322. https://doi.org/10.1146/annurev.immunol.16.1.293

    Article  CAS  PubMed  Google Scholar 

  23. Schindler C, Strehlow I (2000) Cytokines and STAT signaling. Adv Pharmacol 47:113–174. https://doi.org/10.1016/S1054-3589(08)60111-8

    Article  CAS  PubMed  Google Scholar 

  24. Russell SM, Johnston JA, Noguchi M et al (1994) Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science 266(5187):1042–1045. https://doi.org/10.1126/science.7973658

    Article  CAS  PubMed  Google Scholar 

  25. Velazquez L, Mogensen KE, Barbieri G et al (1995) Distinct domains of the protein tyrosine kinase tyk2 required for binding of interferon-alpha/beta and for signal transduction. J Biol Chem 270(7):3327–3334. https://doi.org/10.1074/jbc.270.7.3327

    Article  CAS  PubMed  Google Scholar 

  26. Stahl N, Boulton TG, Farruggella T et al (1994) Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 β receptor components. Science 263(5143):92–95. https://doi.org/10.1126/science.8272873

    Article  CAS  PubMed  Google Scholar 

  27. Finbloom DS, Winestock KD (1995) IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol 155(3):1079–1090. https://doi.org/10.4049/jimmunol.155.3.1079

    Article  CAS  PubMed  Google Scholar 

  28. Bacon CM, McVicar DW, Ortaldo JR et al (1995) Interleukin 12 (IL-12) induces tyrosine phosphorylation of JAK2 and TYK2: differential use of Janus family tyrosine kinases by IL-2 and IL-12. J Exp Med 181(1):399–404. https://doi.org/10.1084/jem.181.1.399

    Article  CAS  PubMed  Google Scholar 

  29. Welham MJ, Learmonth L, Bone H et al (1995) Interleukin-13 signal transduction in lymphohemopoietic cells. Similarities and differences in signal transduction with interleukin-4 and insulin. J Biol Chem 270(20):12286–12296. https://doi.org/10.1074/jbc.270.20.12286

    Article  CAS  PubMed  Google Scholar 

  30. Watford WT, O’Shea JJ (2006) Human tyk2 kinase deficiency: another primary immunodeficiency syndrome. Immunity 25(5):695–697. https://doi.org/10.1016/j.immuni.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  31. Hu W, Lv J, Han M et al (2018) STAT3: the art of multi-tasking of metabolic and immune functions in obesity. Prog Lipid Res 70:17–28. https://doi.org/10.1016/j.plipres.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  32. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 11:798–809. https://doi.org/10.1038/nrc2734

    Article  CAS  Google Scholar 

  33. Boengler K, Hilfiker-Kleiner D, Drexler H et al (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120(2):172–185. https://doi.org/10.1016/j.pharmthera.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  34. Kim SK, Park KY, Yoon WC et al (2011) Melittin enhances apoptosis through suppression of IL-6/sIL-6R complex-induced NF-κB and STAT3 activation and Bcl-2 expression for human fibroblast-like synoviocytes in rheumatoid arthritis. Joint Bone Spine 78(5):471–4777. https://doi.org/10.1016/j.jbspin.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  35. Vinkemeier U, Moarefi I, Darnell JE Jr et al (1998) Structure of the amino-terminal protein interaction domain of STAT-4. Science 279(5353):1048–1052. https://doi.org/10.1126/science.279.5353.1048

    Article  CAS  PubMed  Google Scholar 

  36. Shuai K (2000) Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19(21):2638–2644. https://doi.org/10.1038/sj.onc.1203522

    Article  CAS  PubMed  Google Scholar 

  37. Horvath CM (2000) STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 25(10):496–502. https://doi.org/10.1016/S0968-0004(00)01624-8

    Article  CAS  PubMed  Google Scholar 

  38. Zhang T, Kee WH, Seow KT et al (2000) The coiled-coil domain of Stat3 is essential for its SH2 domain-mediated receptor binding and subsequent activation induced by epidermal growth factor and interleukin-6. Mol Cell Biol 20(19):7132–7139. https://doi.org/10.1128/MCB.20.19.7132-7139.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Collum RG, Brutsaert S, Lee G et al (2000) A Stat3-interacting protein (StIP1) regulates cytokine signal transduction. Proc Natl Acad Sci USA 97(18):10120–10125. https://doi.org/10.1073/pnas.170192197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Begitt A, Meyer T, van Rossum M et al (2000) Nucleocytoplasmic translocation of Stat1 is regulated by a leucine-rich export signal in the coiled-coil domain. Proc Natl Acad Sci USA 97(19):10418–10423. https://doi.org/10.1073/pnas.190318397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawata T, Shevchenko A, Fukuzawa M et al (1997) SH2 signaling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in dictyostelium. Cell 89(6):909–916. https://doi.org/10.1016/S0092-8674(00)80276-7

    Article  CAS  PubMed  Google Scholar 

  42. Kisseleva T, Bhattacharya S, Braunstein J et al (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285(1–2):1–24. https://doi.org/10.1016/S0378-1119(02)00398-0

    Article  CAS  PubMed  Google Scholar 

  43. Yang E, Wen Z, Haspel RL et al (1999) The linker domain of Stat1 is required for gamma interferon-driven transcription. Mol Cell Biol 19(7):5106–5112. https://doi.org/10.1128/MCB.19.7.5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shuai K, Horvath CM, Huang LH et al (1994) Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76(5):821–828. https://doi.org/10.1016/0092-8674(94)90357-3

    Article  CAS  PubMed  Google Scholar 

  45. Gupta S, Yan H, Wong LH et al (1996) The SH2 domains of Stat1 and Stat2 mediate multiple interactions in the transduction of IFN-alpha signals. EMBO J 5:1075–1084. https://doi.org/10.1002/j.1460-2075.1996.tb00445.x

    Article  Google Scholar 

  46. Chen X, Vinkemeier U, Zhao Y et al (1998) Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93(5):827–839. https://doi.org/10.1016/S0092-8674(00)81443-9

    Article  CAS  PubMed  Google Scholar 

  47. Barahmand-Pour F, Meinke A, Groner B et al (1998) Jak2-Stat5 interactions analyzed in yeast. J Biol Chem 273(20):12567–12575. https://doi.org/10.1074/jbc.273.20.12567

    Article  CAS  PubMed  Google Scholar 

  48. Sanachai K, Mahalapbutr P, Choowongkomon K et al (2020) Insights into the binding recognition and susceptibility of tofacitinib toward Janus Kinases. ACS Omega 5(1):369–377. https://doi.org/10.1021/acsomega.9b02800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Shea JJ, Schwartz DM, Villarino AV et al (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328. https://doi.org/10.1146/annurev-med-051113-024537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang IH, Chung WH, Wu PC et al (2022) JAK-STAT signaling pathway in the pathogenesis of atopic dermatitis: an updated review. Front Immunol 13:1068260. https://doi.org/10.3389/fimmu.2022.1068260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117(Pt 8):1281–1283. https://doi.org/10.1242/jcs.00963

    Article  CAS  PubMed  Google Scholar 

  52. Matsukawa A (2007) STAT proteins in innate immunity during sepsis: lessons from gene knockout mice. Acta Med Okayama 61(5):239–245. https://doi.org/10.18926/AMO/32897

    Article  CAS  PubMed  Google Scholar 

  53. Durham GA, Williams JJL, Nasim MT et al (2019) Targeting SOCS proteins to control JAK-STAT signalling in disease. Trends Pharmacol Sci 40(5):298–308. https://doi.org/10.1016/j.tips.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  54. Ihle JN, Witthuhn BA, Quelle FW et al (1995) Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol 13:369–398. https://doi.org/10.1146/annurev.iy.13.040195.002101

    Article  CAS  PubMed  Google Scholar 

  55. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164):1415–1421. https://doi.org/10.1126/science.8197455

    Article  CAS  PubMed  Google Scholar 

  56. Yoshimura A, Yasukawa H (2012) JAK’s SOCS: a mechanism of inhibition. Immunity 36(2):157–159. https://doi.org/10.1016/j.immuni.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  57. Linossi EM, Li K, Veggiani G et al (2021) Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands. Nat Commun 12(1):7032. https://doi.org/10.1038/s41467-021-26983-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7(6):454–465. https://doi.org/10.1038/nri2093

    Article  CAS  PubMed  Google Scholar 

  59. Liang Y, Xu WD, Peng H et al (2014) SOCS signaling in autoimmune diseases: molecular mechanisms and therapeutic implications. Eur J Immunol 44(5):1265–1275. https://doi.org/10.1002/eji.201344369

    Article  CAS  PubMed  Google Scholar 

  60. Yoshimura A, Ohkubo T, Kiguchi T et al (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 14(12):2816–1826. https://doi.org/10.1002/j.1460-2075.1995.tb07281.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kershaw NJ, Murphy JM, Liau NP et al (2013) SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition. Nat Struct Mol Biol 20(4):469–476. https://doi.org/10.1038/nsmb.2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seif F, Khoshmirsafa M, Aazami H et al (2017) The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 15:1–13. https://doi.org/10.1186/s12964-017-0177-y

    Article  CAS  Google Scholar 

  63. Rytinki MM, Kaikkonen S, Pehkonen P et al (2009) PIAS proteins: pleiotropic interactors associated with SUMO. Cell Mol Life Sci 66(18):3029–3041. https://doi.org/10.1007/s00018-009-0061-z

    Article  CAS  PubMed  Google Scholar 

  64. Frankson R, Yu ZH, Bai Y et al (2017) Therapeutic targeting of oncogenic tyrosine phosphatases. Cancer Res 77(21):5701–5705. https://doi.org/10.1158/0008-5472.CAN-17-1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pike KA, Tremblay ML (2018) Protein tyrosine phosphatases: regulators of CD4 T Cells in inflammatory bowel disease. Front Immunol 9:2504. https://doi.org/10.3389/fimmu.2018.02504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Salas A, Hernandez-Rocha C, Duijvestein M et al (2020) JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 17(6):323–337. https://doi.org/10.1038/s41575-020-0273-0

    Article  PubMed  Google Scholar 

  67. Schwartz DM, Bonelli M, Gadina M et al (2016) Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol 12(1):25–36. https://doi.org/10.1038/nrrheum.2015.167

    Article  CAS  PubMed  Google Scholar 

  68. O’Shea JJ, Holland SM, Staudt LM (2013) JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med 368(2):161–170. https://doi.org/10.1056/nejmra1202117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cooper DN, Ball EV, Krawczak M (1998) The human gene mutation database. Nucleic Acids Res 26(1):285–287. https://doi.org/10.1093/nar/26.1.285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luo Y, Alexander M, Gadina M et al (2021) JAK-STAT signaling in human disease: from genetic syndromes to clinical inhibition. J Allergy Clin Immunol 148(4):911–925. https://doi.org/10.1016/j.jaci.2021.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McInnes IB, Szekanecz Z, McGonagle D et al (2022) A review of JAK-STAT signalling in the pathogenesis of spondyloarthritis and the role of JAK inhibition. Rheumatology (Oxford) 61(5):1783–1794. https://doi.org/10.1093/rheumatology/keab740

    Article  CAS  PubMed  Google Scholar 

  72. Fleischmann R, Mysler E, Hall S et al (2017) ORAL Strategy investigators. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet 390(10093):457–468. https://doi.org/10.1016/S0140-6736(17)31618-5

    Article  CAS  PubMed  Google Scholar 

  73. Choy EH, De Benedetti F, Takeuchi T et al (2020) Translating IL-6 biology into effective treatments. Nat Rev Rheumatol 16(6):335–345. https://doi.org/10.1038/s41584-020-0419-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Borchers AT, Naguwa SM, Shoenfeld Y et al (2010) The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev 9(5):A277–A287. https://doi.org/10.1016/j.autrev.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  75. Remmers EF, Plenge RM, Lee AT et al (2007) STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 357(10):977–986. https://doi.org/10.1056/nejmoa073003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Duetsch G, Illig T, Loesgen S et al (2002) STAT6 as an asthma candidate gene: polymorphism-screening, association and haplotype analysis in a Caucasian sib-pair study. Hum Mol Genet 11(6):613–621. https://doi.org/10.1093/hmg/11.6.613

    Article  CAS  PubMed  Google Scholar 

  77. You H, Xu D, Zhao J et al (2020) JAK inhibitors: prospects in connective tissue diseases. Clin Rev Allergy Immunol 59(3):334–351. https://doi.org/10.1007/s12016-020-08786-6

    Article  PubMed  Google Scholar 

  78. Lashgari NA, Roudsari NM, Momtaz S et al (2021) The involvement of JAK/STAT signaling pathway in the treatment of Parkinson’s disease. J Neuroimmunol 361:577758. https://doi.org/10.1016/j.jneuroim.2021.577758

    Article  CAS  PubMed  Google Scholar 

  79. Nabavi SM, Ahmed T, Nawaz M et al (2019) Targeting STATs in neuroinflammation: the road less traveled! Pharmacol Res 141:73–84. https://doi.org/10.1016/j.phrs.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  80. Garretti F, Agalliu D, Lindestam Arlehamn CS et al (2019) Autoimmunity in Parkinson’s disease: the role of α-synuclein-specific T cells. Front Immunol 10:303. https://doi.org/10.3389/fimmu.2019.00303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mosley RL, Gendelman HE (2017) T cells and Parkinson’s disease. Lancet Neurol 16(10):769–771. https://doi.org/10.1016/S1474-4422(17)30276-4

    Article  PubMed  Google Scholar 

  82. Fuxe KG, Tarakanov AO, Goncharova LB et al (2008) A new road to neuroinflammation in Parkinson’s disease? Brain Res Rev 58(2):453–458. https://doi.org/10.1016/j.brainresrev.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  83. Bao L, Zhang H, Chan LS (2013) The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT 2(3):e24137. https://doi.org/10.4161/jkst.24137

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rodrigues MA, Torres T (2020) JAK/STAT inhibitors for the treatment of atopic dermatitis. J Dermatol Treat 31(1):33–40. https://doi.org/10.1080/09546634.2019.1577549

    Article  CAS  Google Scholar 

  85. Spergel JM, Paller AS et al (2003) Atopic dermatitis and the atopic march. J Allergy Clin Immunol 112(6 Suppl):S118–S127. https://doi.org/10.1016/j.jaci.2003.09.033

    Article  PubMed  Google Scholar 

  86. Goenka S, Kaplan MH (2011) Transcriptional regulation by STAT6. Immunol Res 50(1):87–96. https://doi.org/10.1007/s12026-011-8205-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pernis AB, Rothman PB (2002) JAK-STAT signaling in asthma. J Clin Invest 109(10):1279–1283. https://doi.org/10.1172/jci15786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kapp A (1993) The role of eosinophilic granulocytes for the pathogenesis of atopic dermatitis /neurodermatitis. Eosinophilic products as markers of disease activity. Hautarzt 44(7):432–436

    CAS  PubMed  Google Scholar 

  89. Owczarek W, Paplińska M, Targowski T et al (2010) Analysis of eotaxin 1/CCL11, eotaxin 2/CCL24 and eotaxin 3/CCL26 expression in lesional and non-lesional skin of patients with atopic dermatitis. Cytokine 50(2):181–185. https://doi.org/10.1016/j.cyto.2010.02.016

    Article  CAS  PubMed  Google Scholar 

  90. Chen L, Lin SX, Overbergh L et al (2005) The disease progression in the keratin 14 IL-4-transgenic mouse model of atopic dermatitis parallels the up-regulation of B cell activation molecules, proliferation and surface and serum IgE. Clin Exp Immunol 142(1):21–30. https://doi.org/10.1111/j.1365-2249.2005.02894.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Honda T, Miyachi Y, Kabashima K (2011) Regulatory T cells in cutaneous immune responses. J Dermatol Sci 63(2):75–82. https://doi.org/10.1016/j.jdermsci.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  92. Agrawal R, Wisniewski JA, Woodfolk JA (2011) The role of regulatory T cells in atopic dermatitis. Curr Probl Dermatol 41:112–124. https://doi.org/10.1159/000323305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bao L, Shi VY, Chan LS (2013) IL-4 up-regulates epidermal chemotactic, angiogenic, and pro-inflammatory genes and down-regulates antimicrobial genes in vivo and in vitro: relevant in the pathogenesis of atopic dermatitis. Cytokine 61(2):419–425. https://doi.org/10.1016/j.cyto.2012.10.031

    Article  CAS  PubMed  Google Scholar 

  94. Schittek B (2011) The antimicrobial skin barrier in patients with atopic dermatitis. Curr Probl Dermatol 41:54–67. https://doi.org/10.1159/000323296

    Article  CAS  PubMed  Google Scholar 

  95. Tefferi TA (2007) JAK2 mutations and clinical practice in myeloproliferative neoplasms. Cancer J 13(6):366–371. https://doi.org/10.1097/ppo.0b013e318159467b

    Article  CAS  PubMed  Google Scholar 

  96. Kilpivaara O, Levine RL (2008) JAK2 and MPL mutations in myeloproliferative neoplasms: discovery and science. Leukemia 22(10):1813–1817. https://doi.org/10.1038/leu.2008.229

    Article  PubMed  Google Scholar 

  97. Baldini C, Moriconi FR, Galimberti S et al (2021) The JAK-STAT pathway: an emerging target for cardiovascular disease in rheumatoid arthritis and myeloproliferative neoplasms. Eur Heart J 42(42):4389–4400. https://doi.org/10.1093/eurheartj/ehab447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):177917–177990. https://doi.org/10.1056/nejmoa051113

    Article  Google Scholar 

  99. Wan Z, Han B (2020) Comparison and implications of mutational profiles of myelodysplastic syndromes, myeloproliferative neoplasms, and myelodysplastic/myeloproliferative neoplasms: a meta-analysis. Front Oncol 10:579221. https://doi.org/10.3389/fonc.2020.579221

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rumi E, Baratè C, Benevolo G et al (2020) Myeloproliferative and lymphoproliferative disorders: state of the art. Hematol Oncol 38(2):121–128. https://doi.org/10.1002/hon.2701

    Article  PubMed  Google Scholar 

  101. Keewan E, Matlawska-Wasowska K (2021) The emerging role of suppressors of cytokine signaling (SOCS) in the development and progression of Leukemia. Cancers (Basel) 13(16):4000. https://doi.org/10.3390/cancers13164000

    Article  CAS  PubMed  Google Scholar 

  102. Postal M, Vivaldo JF, Fernandez-Ruiz R et al (2020) Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr Opin Immunol 67:87–94. https://doi.org/10.1016/j.coi.2020.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bagavant H, Fu SM (2009) Pathogenesis of kidney disease in systemic lupus erythematosus. Curr Opin Rheumatol 21(5):489–494. https://doi.org/10.1097/FBOR.0b013e32832efff1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Radosevic N, Winterstein D, Keller JR et al (2004) JAK2 contributes to the intrinsic capacity of primary hematopoietic cells to respond to stem cell factor. Exp Hematol 32(2):149–156. https://doi.org/10.1016/j.exphem.2003.11.006

    Article  CAS  PubMed  Google Scholar 

  105. Akada H, Akada S, Hutchison RE et al (2014) Critical role of Jak2 in the maintenance and function of adult hematopoietic stem cells. Stem Cells 32(7):1878–1889. https://doi.org/10.1002/stem.1711

    Article  CAS  PubMed  Google Scholar 

  106. Livnah O, Stura EA, Middleton SA et al (1999) Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283(5404):987–990. https://doi.org/10.1126/science.283.5404.987

    Article  CAS  PubMed  Google Scholar 

  107. Thomis DC, Gurniak CB, Tivol E et al (1995) Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270(5237):794–797. https://doi.org/10.1126/science.270.5237.794

    Article  CAS  PubMed  Google Scholar 

  108. King TE Jr, Pardo A, Selman M (2011) Idiopathic pulmonary fibrosis. Lancet 378(9807):1949–1961. https://doi.org/10.1016/S0140-6736(11)60052-4

    Article  PubMed  Google Scholar 

  109. Wilson MS, Wynn TA (2009) Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol 2(2):103–121. https://doi.org/10.1038/mi.2008.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Maher TM, Wells AU, Laurent GJ (2007) Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms? Eur Respir J 30(5):835–839. https://doi.org/10.1183/09031936.00069307

    Article  CAS  PubMed  Google Scholar 

  111. Talotta R (2021) The rationale for targeting the JAK/STAT pathway in scleroderma-associated interstitial lung disease. Immunotherapy 13(3):241–256. https://doi.org/10.2217/imt-2020-0270

    Article  CAS  PubMed  Google Scholar 

  112. Li Y, Zhao J, Yin Y et al (2022) The role of IL-6 in fibrotic diseases: molecular and cellular mechanisms. Int J Biol Sci 18(14):5405–5414. https://doi.org/10.7150/ijbs.75876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rotenberg C, Besnard V, Brillet PY et al (2018) Dramatic response of refractory sarcoidosis under ruxolitinib in a patient with associated JAK2-mutated polycythemia. Eur Respir J 52(6):1801482. https://doi.org/10.1183/13993003.01482-2018

    Article  PubMed  Google Scholar 

  114. Li T, Yang X, Zhu J et al (2023) Current application status and structure-activity relationship of selective and non-selective JAK inhibitors in diseases. Int Immunopharmacol 122:110660. https://doi.org/10.1016/j.intimp.2023.110660

    Article  CAS  PubMed  Google Scholar 

  115. Ostojic A, Vrhovac R, Verstovsek S (2011) Ruxolitinib: a new JAK1/2 inhibitor that offers promising options for treatment of myelofibrosis. Future Oncol 7(9):1035–1043. https://doi.org/10.2217/fon.11.81

    Article  CAS  PubMed  Google Scholar 

  116. Ayala-Aguilera CC, Valero T, Lorente-Macías Á et al (2022) Small molecule kinase inhibitor drugs (1995–2021): medical indication, pharmacology, and synthesis. J Med Chem 2:1047–1131. https://doi.org/10.1021/acs.jmedchem.1c00963

    Article  CAS  Google Scholar 

  117. Rodgers JD, Shepard S inventors; Incyte Corp, assignee (2009) Heteroaryl substituted pyrrolo [2, 3-b] pyridines and pyrrolo [2, 3-b] pyrimidines as janus kinase inhibitors. United States Patent US 7(598):257

    Google Scholar 

  118. Mascarenhas J, Hoffman R (2012) Ruxolitinib: the first FDA approved therapy for the treatment of myelofibrosis. Clin Cancer Res 11:3008–3014. https://doi.org/10.1158/1078-0432.ccr-11-3145

    Article  Google Scholar 

  119. Scherber RM, Mesa RA (2018) Managing myelofibrosis (MF) that “blasts” through: advancements in the treatment of relapsed/refractory and blast-phase MF. Hematol Am Soc Hematol Educ Program 1:118–126. https://doi.org/10.1182/asheducation-2018.1.118

    Article  Google Scholar 

  120. Raedler LA (2015) Jakafi (Ruxolitinib): first FDA-approved medication for the treatment of patients with polycythemia vera. Am Health Drug Benefits 8(Spec Feature):75–79

    PubMed  PubMed Central  Google Scholar 

  121. Yang W, Zhu G, Qin M et al (2021) The effectiveness of ruxolitinib for acute/chronic graft-versus-host disease in children: a retrospective study. Drug Des Devel Ther 15:743–752. https://doi.org/10.2147/DDDT.S287218

    Article  PubMed  PubMed Central  Google Scholar 

  122. Arana Yi C, Tam CS, Verstovsek S (2015) Efficacy and safety of ruxolitinib in the treatment of patients with myelofibrosis. Future Oncol 11(5):719–733. https://doi.org/10.2217/fon.14.272

    Article  CAS  PubMed  Google Scholar 

  123. Clark JD, Flanagan ME, Telliez JB (2014) Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem 12:5023–5038. https://doi.org/10.1021/jm401490p

    Article  CAS  Google Scholar 

  124. Blumenkopf TA, Flanagan ME, Brown MF, inventors; Pfizer Inc, assignee et al (2009) Pyrrolo [2, 3-d] pyrimidine compounds. United States Patent US 7(569):569

    Google Scholar 

  125. Meydan N, Grunberger T, Dadi H et al (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 6566:645–648. https://doi.org/10.1038/379645a0

    Article  Google Scholar 

  126. Coricello A, Mesiti F, Lupia A et al (2020) Inside perspective of the synthetic and computational toolbox of JAK inhibitors: recent updates. Molecules 15:3321. https://doi.org/10.3390/molecules25153321

    Article  CAS  Google Scholar 

  127. Mohanakrishnan R, Beier S, Deodhar A (2022) Tofacitinib for the treatment of active ankylosing spondylitis in adults. Expert Rev Clin Immunol 18(3):273–280. https://doi.org/10.1080/1744666X.2022.2038134

    Article  CAS  PubMed  Google Scholar 

  128. Flanagan ME, Blumenkopf TA, Brissette WH et al (2010) Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J Med Chem 24:8468–8484. https://doi.org/10.1021/jm1004286

    Article  CAS  Google Scholar 

  129. Noji S, Hara Y, Miura T et al (2020) Discovery of a Janus Kinase inhibitor bearing a highly three-dimensional spiro scaffold: JTE-052 (Delgocitinib) as a new dermatological agent to treat inflammatory skin disorders. J Med Chem 63(13):7163–7185. https://doi.org/10.1021/acs.jmedchem.0c00450

    Article  CAS  PubMed  Google Scholar 

  130. Rodgers JD, Shepard S inventors; Incyte Corp, assignee (2012) Azetidine and cyclobutane derivatives as JAK inhibitors. United States Patent US 8(158):616

    Google Scholar 

  131. Markham A (2017) Baricitinib: first global approval. Drugs 77(6):697–704. https://doi.org/10.1007/s40265-017-0723-3

    Article  CAS  PubMed  Google Scholar 

  132. Lin Z, Niu J, Xu Y et al (2022) Clinical efficacy and adverse events of baricitinib treatment for coronavirus disease-2019 (COVID-19): a systematic review and meta-analysis. J Med Virol 94(4):1523–1534. https://doi.org/10.1002/jmv.27482

    Article  CAS  PubMed  Google Scholar 

  133. Flick AC, Leverett CA, Ding HX et al (2021) Synthetic approaches to the new drugs approved during 2019. J Med Chem 64(7):3604–3657. https://doi.org/10.1021/acs.jmedchem.1c00208

    Article  CAS  PubMed  Google Scholar 

  134. Inoue T, Tojo T, Morita M, inventors et al (2012) Heterocyclic Janus Kinase 3 inhibitors. United States patent US 8(163):767

    Google Scholar 

  135. Markham A, Keam SJ (2019) Peficitinib: first global approval. Drugs 79(8):887–891. https://doi.org/10.1007/s40265-019-01131-y

    Article  CAS  PubMed  Google Scholar 

  136. Ito M, Yamazaki S, Yamagami K et al (2017) A novel JAK inhibitor, peficitinib, demonstrates potent efficacy in a rat adjuvant-induced arthritis model. J Pharmacol Sci 133(1):25–33. https://doi.org/10.1016/j.jphs.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  137. Akeuchi T, Tanaka Y, Iwasaki M et al (2016) Efficacy and safety of the oral Janus kinase inhibitor peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis in Japan: a 12-week, randomised, double-blind, placebo-controlled phase IIb study. Ann Rheum Dis 6:1057–1064. https://doi.org/10.1136/annrheumdis-2015-208279

    Article  CAS  Google Scholar 

  138. Dhillon S (2020) Delgocitinib: first approval. Drugs 80(6):609–615. https://doi.org/10.1007/s40265-020-01291-2

    Article  CAS  PubMed  Google Scholar 

  139. Shawky AM, Almalki FA, Abdalla AN et al (2022) A comprehensive overview of globally approved JAK inhibitors. Pharmaceutics 14(5):1001. https://doi.org/10.3390/pharmaceutics14051001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Onzales AJ, Bowman JW, Fici GJ et al (2014) Oclacitinib (APOQUEL(®)) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. J Vet Pharmacol Ther 37(4):317–324. https://doi.org/10.1111/jvp.12101

    Article  CAS  Google Scholar 

  141. Sands BE, Sandborn WJ, Feagan BG et al (2018) Peficitinib, an Oral Janus Kinase Inhibitor, in moderate-to-severe ulcerative colitis: results from a randomised, phase 2 study. J Crohns Colitis 12(10):1158–1169. https://doi.org/10.1093/ecco-jcc/jjy085

    Article  PubMed  Google Scholar 

  142. Tyner JW, Bumm TG, Deininger J et al (2010) CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood 115(25):5232–5240. https://doi.org/10.1182/blood-2009-05-223727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Flick AC, Ding HX, Leverett CA et al (2017) Synthetic approaches to the new drugs approved during 2015. J Med Chem 60(15):6480–6515. https://doi.org/10.1021/acs.jmedchem.7b00010

    Article  CAS  PubMed  Google Scholar 

  144. Allian A, Jayanth J, Mohamed ME, inventors; AbbVie Inc., assignee et al (2017) Processes for the preparation of (3S, 4R)-3-ethyl-4-(3H-imidazo [1, 2-alpha] pyrrolo [2, 3-e]-pyrazin-8-YL)-N-(2, 2, 2-trifluoroethyl) pyrrolidine-1-carboxamide and solid state forms thereof. United States Patent US 15(295):561

    Google Scholar 

  145. Duggan S, Keam SJ (2019) Upadacitinib: first approval. Drugs 79(16):1819–1828. https://doi.org/10.1007/s40265-019-01211-z

    Article  PubMed  Google Scholar 

  146. Muensterman E, Engelhardt B, Gopalakrishnan S et al (2022) Upadacitinib pharmacokinetics and exposure-response analyses of efficacy and safety in psoriatic arthritis patients—analyses of phase III clinical trials. Clin Transl Sci 15(1):267–278. https://doi.org/10.1111/cts.13146

    Article  CAS  PubMed  Google Scholar 

  147. Ferreira S, Guttman-Yassky E, Torres T (2020) Selective JAK1 inhibitors for the treatment of atopic dermatitis: focus on Upadacitinib and Abrocitinib. Am J Clin Dermatol 21:783–98. https://doi.org/10.1007/s40257-020-00548-6

    Article  PubMed  Google Scholar 

  148. Law CC, Kayal M, Mehandru S et al (2023) A critical review of upadacitinib for the treatment of adults with moderately to severely active ulcerative colitis. Expert Rev Gastroenterol Hepatol 17(2):109–117. https://doi.org/10.1080/17474124.2023.2172399

    Article  CAS  PubMed  Google Scholar 

  149. Oskoski R Jr (2022) Janus kinase (JAK) inhibitors in the treatment of neoplastic and inflammatory disorders. Pharmacol Res 183:106362. https://doi.org/10.1016/j.phrs.2022.106362

    Article  CAS  Google Scholar 

  150. Menet CJ, Jouannigot N, Blanc J, inventors; Galapagos NV, assignee et al (2014) Compounds useful for the treatment of degenerative and inflammatory diseases. United States Patent US 8(853):240

    Google Scholar 

  151. Dhillon S, Keam SJ (2020) Filgotinib: first approval. Drugs 80(18):1987–1997. https://doi.org/10.1007/s40265-020-01439-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vazquez ML, Kaila N, Strohbach JW et al (2018) Identification of N-{cis-3-[Methyl (7 H-pyrrolo [2, 3-d] pyrimidin-4-yl) amino] cyclobutyl} propane-1-sulfonamide (PF-04965842): a selective JAK1 clinical candidate for the treatment of autoimmune diseases. J Med Chem 61(3):1130–1152. https://doi.org/10.1021/acs.jmedchem.7b01598

    Article  CAS  PubMed  Google Scholar 

  153. Deeks ED, Duggan S (2021) Abrocitinib: first approval. Drugs 81(18):2149–2157. https://doi.org/10.1007/s40265-021-01638-3. (Erratum. In: Drugs. 2022 Apr;82(5):609. doi:10.1007/s40265-021-01638-3)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Perche PO, Cook MK, Feldman SR (2023) Abrocitinib: a new FDA-approved drug for moderate-to-severe atopic dermatitis. Ann Pharmacother 57(1):86–98. https://doi.org/10.1177/10600280221096713

    Article  CAS  PubMed  Google Scholar 

  155. Blair HA (2019) Fedratinib: first approval. Drugs 79(15):1719–1725. https://doi.org/10.1007/s40265-019-01205-x

    Article  CAS  PubMed  Google Scholar 

  156. Wernig G, Kharas MG, Okabe R et al (2008) Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 13(4):311–320. https://doi.org/10.1016/j.ccr.2008.02.009

    Article  CAS  PubMed  Google Scholar 

  157. William AD, Lee AC, Blanchard S et al (2011) Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lymphoma. J Med Chem 54(13):4638–4658. https://doi.org/10.1021/jm200326p

    Article  CAS  PubMed  Google Scholar 

  158. Bach PB, Giralt SA, Saltz LB (2017) FDA approval of tisagenlecleucel: promise and complexities of a $475 000 cancer drug. JAMA 318(19):1861–1862. https://doi.org/10.1001/jama.2017.15218

    Article  PubMed  Google Scholar 

  159. De SK (2023) First approval of Pacritinib as a selective Janus associated kinase-2 inhibitor for the treatment of patients with myelofibrosis. Anticancer Agents Med Chem 23(12):1355–1360. https://doi.org/10.2174/1871520623666230320120915

    Article  CAS  PubMed  Google Scholar 

  160. Thorarensen A, Dowty ME, Banker ME et al (2017) Design of a Janus Kinase 3 (JAK3) specific inhibitor 1-((2 S, 5 R)-5-((7 H-Pyrrolo [2, 3-d] pyrimidin-4-yl) amino)-2-methylpiperidin-1-yl) prop-2-en-1-one (PF-06651600) allowing for the interrogation of JAK3 signaling in humans. J Med Chem 60(5):1971–1993. https://doi.org/10.1021/acs.jmedchem.6b01694

    Article  CAS  PubMed  Google Scholar 

  161. Carvalho T (2023) FDA approves Pfizer’s JAK inhibitor for adolescents with alopecia areata hair loss. Nat Med 29(9):2144–2145. https://doi.org/10.1038/d41591-023-00065-z

    Article  CAS  PubMed  Google Scholar 

  162. Wrobleski ST, Moslin R, Lin S et al (2019) Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. J Med Chem 62(20):8973–8995. https://doi.org/10.1021/acs.jmedchem.9b00444

    Article  CAS  PubMed  Google Scholar 

  163. Moslin R, Zhang Y, Wrobleski ST et al (2019) Identification of N-methyl nicotinamide and N-methyl pyridazine-3-carboxamide pseudokinase domain ligands as highly selective allosteric inhibitors of tyrosine kinase 2 (TYK2). J Med Chem 62(20):8953–8972. https://doi.org/10.1021/acs.jmedchem.9b00443

    Article  CAS  PubMed  Google Scholar 

  164. Truong TM, Pathak GN, Singal A et al (2023) Deucravacitinib: the first FDA-approved oral TYK2 inhibitor for moderate to severe plaque psoriasis. Ann Pharmacother. https://doi.org/10.1177/10600280231153863

    Article  PubMed  Google Scholar 

  165. Roskoski R Jr (2023) Deucravacitinib is an allosteric TYK2 protein kinase inhibitor FDA-approved for the treatment of psoriasis. Pharmacol Res 189:106642. https://doi.org/10.1016/j.phrs.2022.106642

    Article  CAS  PubMed  Google Scholar 

  166. Tanaka Y, Kavanaugh A, Wicklund J et al (2022) Filgotinib, a novel JAK1-preferential inhibitor for the treatment of rheumatoid arthritis: an overview from clinical trials. Mod Rheumatol 32(1):1–11. https://doi.org/10.1080/14397595.2021.1902617

    Article  CAS  PubMed  Google Scholar 

  167. Pardanani A, Lasho T, Smith G et al (2009) CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients. Leukemia 23(8):1441–1445. https://doi.org/10.1038/leu.2009.50

    Article  CAS  PubMed  Google Scholar 

  168. Alizoti E, Michler L, Orthey E et al (2022) JAK1 Inhibitors reduce CRYABR120G aggregates in rat and human cardiomyocytes. J Mol Cell Cardiol 173:95–96. https://doi.org/10.1016/j.yjmcc.2022.08.193

    Article  Google Scholar 

  169. Farmer LJ, Ledeboer MW, Hoock T et al (2015) Discovery of VX-509 (Decernotinib): a potent and selective Janus kinase 3 inhibitor for the treatment of autoimmune diseases. J Med Chem 58(18):7195–7216. https://doi.org/10.1021/acs.jmedchem.5b00301

    Article  CAS  PubMed  Google Scholar 

  170. Cole KP, Douglas JJ, Hammerstad T et al (2023) Visible-light photocatalysis academic-industrial collaboration retrospective: shared learning and impact analysis. Org Process Res Dev 27(3):399–408. https://doi.org/10.1021/acs.oprd.2c00358

    Article  CAS  Google Scholar 

  171. Sandborn WJ, Danese S, Leszczyszyn J et al (2023) Oral Ritlecitinib and Brepocitinib for moderate-to-severe ulcerative colitis: results from a randomized, phase 2b study. Clin Gastroenterol Hepatol 21(10):2616-2628.e7. https://doi.org/10.1016/j.cgh.2022.12.029

    Article  CAS  PubMed  Google Scholar 

  172. Xu S, Zhu Y, Meng J et al (2023) 2-Aminopyrimidine derivatives as selective dual inhibitors of JAK2 and FLT3 for the treatment of acute myeloid leukemia. Bioorg Chem 134:106442. https://doi.org/10.1016/j.bioorg.2023.106442

    Article  CAS  PubMed  Google Scholar 

  173. Zhou H, Jiang J, Lu J et al (2022) Synthesis and biological evaluation of novel 2, 4-dianilinopyrimidine derivatives as potent dual janus kinase 2 and histone deacetylases inhibitors. J Mol Struct 1253:132200. https://doi.org/10.1016/j.molstruc.2021.132200

    Article  CAS  Google Scholar 

  174. Su W, Chen Z, Liu M et al (2022) studies of pyrido [2, 3-d] pyrimidin-7-ones as potent Janus Kinase 3 (JAK3) covalent inhibitors. Bioorganic Med Chem Lett 64:128680. https://doi.org/10.1016/j.bmcl.2022.128680

    Article  CAS  Google Scholar 

  175. Mao W, Wu H, Guo Q et al (2022) Synthesis and evaluation of hydrazinyl-containing pyrrolo [2, 3-d] pyrimidine series as potent, selective and oral JAK1 inhibitors for the treatment of rheumatoid arthritis. Bioorg Med Chem Lett 74:128905. https://doi.org/10.1016/j.bmcl.2022.128905

    Article  CAS  PubMed  Google Scholar 

  176. Wu B, Yang S, Deng T et al (2021) Design, synthesis, and biological evaluation of cyano-substituted 2,4-diarylaminopyrimidines as potent JAK3 inhibitors for the treatment of B-cell lymphoma. Bioorg Chem 116:105330. https://doi.org/10.1016/j.bioorg.2021.105330

    Article  CAS  PubMed  Google Scholar 

  177. Liang X, Tang S, Liu X et al (2021) Discovery of novel pyrrolo [2, 3-d] pyrimidine-based derivatives as potent JAK/HDAC dual inhibitors for the treatment of refractory solid tumors. J Med Chem 65(2):1243–1264. https://doi.org/10.1021/acs.jmedchem.0c02111

    Article  CAS  PubMed  Google Scholar 

  178. Li Y, Wang P, Chen C et al (2020) Discovery and rational design of 2-aminopyrimidine-based derivatives targeting Janus kinase 2 (JAK2) and FMS-like tyrosine kinase 3 (FLT3). Bioorg Chem 104:104361. https://doi.org/10.1016/j.bioorg.2020.104361

    Article  CAS  PubMed  Google Scholar 

  179. Chi F, Chen L, Wang C et al (2020) JAK3 inhibitors based on thieno [3, 2-d] pyrimidine scaffold: design, synthesis and bioactivity evaluation for the treatment of B-cell lymphoma. Bioorg Chem 95:103542. https://doi.org/10.1016/j.bioorg.2019.103542

    Article  CAS  PubMed  Google Scholar 

  180. Zhu Y, Zheng X, Wang C et al (2020) Synthesis and biological activity of thieno [3, 2-d] pyrimidines as potent JAK3 inhibitors for the treatment of idiopathic pulmonary fibrosis. Bioorg Med Chem 28(2):115254. https://doi.org/10.1016/j.bmc.2019.115254

    Article  CAS  PubMed  Google Scholar 

  181. Shu L, Chen C, Huan X et al (2020) Design, synthesis, and pharmacological evaluation of 4- or 6-phenyl-pyrimidine derivatives as novel and selective Janus kinase 3 inhibitors. Eur J Med Chem 191:112148. https://doi.org/10.1016/j.ejmech.2020.112148

    Article  CAS  PubMed  Google Scholar 

  182. Ren J, Shi W, Zhao D et al (2020) Design and synthesis of boron-containing diphenylpyrimidines as potent BTK and JAK3 dual inhibitors. Bioorg Med Chem 28(2):115236. https://doi.org/10.1016/j.bmc.2019.115236

    Article  CAS  PubMed  Google Scholar 

  183. Liang T, Cen L, Wang J et al (2023) Discovery of novel dual Bruton’s Tyrosine Kinase (BTK) and Janus Kinase 3 (JAK3) inhibitors as a promising strategy for rheumatoid arthritis. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2023.117354

    Article  PubMed  Google Scholar 

  184. Yang T, Hu M, Chen Y et al (2020) N-(Pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-amine derivatives as selective Janus kinase 2 inhibitors for the treatment of myeloproliferative neoplasms. J Med Chem 63(23):14921–14936. https://doi.org/10.1021/acs.jmedchem.0c01488

    Article  CAS  PubMed  Google Scholar 

  185. Yin Y, Chen CJ, Yu RN et al (2020) Novel 1H-pyrazolo [3, 4-d] pyrimidin-6-amino derivatives as potent selective Janus kinase 3 (JAK3) inhibitors. Evaluation of their improved effect for the treatment of rheumatoid arthritis. Bioorg Chem 98:103720. https://doi.org/10.1016/j.bioorg.2020.103720

    Article  CAS  PubMed  Google Scholar 

  186. Fensome A, Ambler CM, Arnold E et al (2020) Design and optimization of a series of 4-(3-azabicyclo [3.1. 0] hexan-3-yl) pyrimidin-2-amines: dual inhibitors of TYK2 and JAK1. Bioorg Med Chem 28(10):115481. https://doi.org/10.1016/j.bmc.2020.115481

    Article  CAS  PubMed  Google Scholar 

  187. Guo Y, Zou Y, Chen Y et al (2023) Design, synthesis and biological evaluation of purine-based derivatives as novel JAK2/BRD4 (BD2) dual target inhibitors. Bioorg Chem 132:106386. https://doi.org/10.1016/j.bioorg.2023.106386

    Article  CAS  PubMed  Google Scholar 

  188. Zheng YG, Wang JA, Meng L et al (2021) Design, synthesis, biological activity evaluation of 3-(4-phenyl-1H-imidazol-2-yl)-1H-pyrazole derivatives as potent JAK 2/3 and aurora A/B kinases multi-targeted inhibitors. Eur J Med Chem 209:112934. https://doi.org/10.1016/j.ejmech.2020.112934

    Article  CAS  PubMed  Google Scholar 

  189. Xu P, Shen P, Wang H et al (2021) Discovery of imidazopyrrolopyridines derivatives as novel and selective inhibitors of JAK2. Eur J Med Chem 218:113394. https://doi.org/10.1016/j.ejmech.2021.113394

    Article  CAS  PubMed  Google Scholar 

  190. Thoma G, Duthaler RO et al (2023) Discovery and characterization of the topical soft JAK inhibitor CEE321 for atopic dermatitis. J Med Chem 66(3):2161–2168. https://doi.org/10.1021/acs.jmedchem.2c01977

    Article  CAS  PubMed  Google Scholar 

  191. Liu D, Ge H, Xu F et al (2022) Design, synthesis and SAR study of 2-aminopyridine derivatives as potent and selective JAK2 inhibitors. Chin Chem Lett 33(6):2969–2974. https://doi.org/10.1016/j.cclet.2021.12.099

    Article  CAS  Google Scholar 

  192. Park E, Lee SJ, Moon H et al (2021) Discovery and biological evaluation of N-methyl-pyrrolo [2, 3-b] pyridine-5-carboxamide derivatives as JAK1-selective inhibitors. J Med Chem 64(2):958–979. https://doi.org/10.1021/acs.jmedchem.0c01026

    Article  CAS  PubMed  Google Scholar 

  193. Liu F, Wang B, Liu Y et al (2023) Design, synthesis and biological evaluation of novel N-(methyl-d3) pyridazine-3-carboxamide derivatives as TYK2 inhibitors. Bioorg Med Chem Lett 86:129235. https://doi.org/10.1016/j.bmcl.2023.129235

    Article  CAS  PubMed  Google Scholar 

  194. Zhang JQ, Li R, Dong XY et al (2022) Design, synthesis and structure-activity relationship studies of Meridianin derivatives as novel JAK/STAT3 signaling inhibitors. Int J Mol Sci 23(4):2199. https://doi.org/10.3390/ijms23042199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kim W, Lee SM, Jeong PH et al (2022) Synthesis and structure-activity relationship studies of 1,5-isomers of triazole-pyrrolopyrimidine as selective Janus kinase 1 (JAK1) inhibitors. Bioorg Med Chem Lett 55:128451. https://doi.org/10.1016/j.bmcl.2021.128451

    Article  CAS  PubMed  Google Scholar 

  196. Daoud S, Taha MO (2021) Design and synthesis of new JAK1 inhibitors based on Sulfonamide- Triazine Conjugates. Curr Comput Aided Drug Des 17(7):916–926. https://doi.org/10.2174/1573409916666201224152253

    Article  CAS  PubMed  Google Scholar 

  197. Gad EM, Nafie MS, Eltamany EH et al (2020) Discovery of new apoptosis-inducing agents for breast cancer based on ethyl 2-amino-4, 5, 6, 7-tetra hydrobenzo [b] thiophene-3-carboxylate: Synthesis, in vitro, and in vivo activity evaluation. Molecules 25(11):2523. https://doi.org/10.3390/molecules25112523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wang DP, Wu LH, Li R et al (2023) A novel aldisine derivative exhibits potential antitumor effects by targeting JAK/STAT3 signaling. Mar Drugs 21(4):218. https://doi.org/10.3390/md21040218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Acharya & B M Reddy College of Pharmacy in Bengaluru and the Indian Council of Medical Research (ICMR) under grants (No. 5/13/79/2020/NCD-III and No. 5/13/12/2020/NCD-III).

Author information

Authors and Affiliations

Authors

Contributions

LM: conceptualization, original draft preparation, data collection, figure preparation and sorting of data. SS: original draft preparation, data collection and design. GSPM: supervising the work and scientific advisor. GT: primary editing and design. GB, PKD and MPM: secondary editing, proof reading, scientific evaluation.

Corresponding author

Correspondence to Gurubasavaraja Swamy Purawarga Matada.

Ethics declarations

Conflict of interest

The authors have affirmed that they do not have any financial or interpersonal conflicts that would have looked to influence the study disclosed in this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, L., Sengupta, S., Purawarga Matada, G.S. et al. Medicinal chemistry perspective of JAK inhibitors: synthesis, biological profile, selectivity, and structure activity relationship. Mol Divers (2024). https://doi.org/10.1007/s11030-023-10794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10794-5

Keywords

Navigation