Skip to main content

Advertisement

Log in

Design, synthesis of benzimidazole tethered 3,4-dihydro-2H-benzo[e] [1, 3] oxazines as anticancer agents

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of novel 3-(1H-benzo[d]imidazol-2-yl)-3,4-dihydro-2H-benzo[e][1,3] oxazine analogues synthesized through a two-step synthetic protocol. The structure of the compounds were established by interpretation 1H NMR, 13C NMR and Mass spectral data recorded after purification. All the title compounds 4a–k were screened for their in vitro anti-cancer activity against two breast cancer cell lines MCF 7 and MDA-MB-231 by using Doxorubicin as standard reference. Compound 4e displayed superior activity against both the cell lines MCF-7 and MDA-MB-231 with IC50 values of 8.60 ± 0.75 and 6.30 ± 0.54 µM respectively, compared to the Doxorubicin IC50 value of 9.11 ± 0.54 and 8.47 ± 0.47 µM. Compound 4i also indicated good activity with IC50 value of 9.85 ± 0.69 μM on par with Doxorubicin against MCF-7 cells. Compound 4g demonstrated best activity on par with standard reference to IC50 value of 8.52 ± 0.62 μM against MDA-MB-231 cell line. And all other compounds demonstrated good to moderate activity compared to Doxorubicin. Docking studies against EGFR showed that all the compounds have very good binding affinities towards the target. The predicted drug-likeness properties of all compounds enable them to be used as therapeutic agents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme. 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Ghorbani M, Bushra Begum A, Zabiulla Z et al (2015) Piperazine and morpholine: synthetic preview and pharmaceutical applications. Res J Pharm Technol 8:611–628. https://doi.org/10.5958/0974-360X.2015.00100.6

    Article  Google Scholar 

  2. Sawyer TK (2007) Novel Small-Molecule Inhibitors of Src Kinase for Cancer Therapy. Cancer. https://doi.org/10.1007/7355_2006_010

    Article  Google Scholar 

  3. Mathur G, Nain S, Sharma PK (2015) Cancer: an overview. Acad J Cancer Res 8(1):1–9

    Google Scholar 

  4. Hassanpour SH, Dehghani M (2017) Review of cancer from perspective of molecular. J Cancer Res Pract 4:127–129. https://doi.org/10.1016/j.jcrpr.2017.07.001

    Article  Google Scholar 

  5. Mallikanti V, Thumma V, Veeranki KC et al (2022) Synthesis, cytotoxicity, molecular docking and ADME assay of novel morpholine appended 1,2,3-triazole analogues. ChemistrySelect 7:e202204020. https://doi.org/10.1002/slct.202204020

    Article  CAS  Google Scholar 

  6. Ruddarraju RR, Murugulla AC, Kotla R et al (2017) Design, synthesis, anticancer activity and docking studies of theophylline containing 1,2,3-triazoles with variant amide derivatives. Medchemcomm 8:176–183. https://doi.org/10.1039/C6MD00479B

    Article  CAS  PubMed  Google Scholar 

  7. Sun C, Chen C, Xu S et al (2016) Synthesis and anticancer activity of novel 4-morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives bearing chromone moiety. Bioorg Med Chem 24:3862–3869. https://doi.org/10.1016/j.bmc.2016.06.032

    Article  CAS  PubMed  Google Scholar 

  8. Organization WH Cancer. http://www.who.int/cancer/en/. Accessed 9 Oct 2018

  9. Lee CY, Chew EH, Go ML (2010) Functionalized aurones as inducers of NAD(P)H:quinone oxidoreductase 1 that activate AhR/XRE and Nrf2/ARE signaling pathways: Synthesis, evaluation and SAR. Eur J Med Chem 45:2957–2971. https://doi.org/10.1016/j.ejmech.2010.03.023

    Article  CAS  PubMed  Google Scholar 

  10. Vásquez D, Rodríguez JA, Theoduloz C et al (2010) Studies on quinones. Part 46. Synthesis and in vitro antitumor evaluation of aminopyrimidoisoquinolinequinones. Eur J Med Chem 45:5234–5242. https://doi.org/10.1016/j.ejmech.2010.08.040

    Article  CAS  PubMed  Google Scholar 

  11. Arcamone F, Cassinelli G, Fantini G et al (1969) Adriamycin, 14-hydroxydaimomycin, a new antitumor antibiotic from S Peucetius var caesius. Biotechnol Bioeng 11:1101–1110. https://doi.org/10.1002/bit.260110607

    Article  CAS  PubMed  Google Scholar 

  12. Cortés-Funes H, Coronado C (2007) Role of anthracyclines in the era of targeted therapy. Cardiovasc Toxicol 7:56–60. https://doi.org/10.1007/s12012-007-0015-3

    Article  CAS  PubMed  Google Scholar 

  13. Robledo-Cadena DX, Gallardo-Pérez JC, Dávila-Borja V et al (2020) Non-steroidal anti-inflammatory drugs increase cisplatin, paclitaxel, and doxorubicin efficacy against human cervix cancer cells. Pharmaceuticals 13:1–25. https://doi.org/10.3390/ph13120463

    Article  CAS  Google Scholar 

  14. Rushing DA, Raber SR, Rodvold KA et al (1994) The effects of cyclosporine on the pharmacokinetics of doxorubicin in patients with small cell lung cancer. Cancer 74:834–841

    Article  CAS  PubMed  Google Scholar 

  15. van der Zanden SY, Qiao X, Neefjes J (2021) New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J 288:6095–6111. https://doi.org/10.1111/febs.15583

    Article  CAS  PubMed  Google Scholar 

  16. Shukla A, Hillegass JM, MacPherson MB et al (2010) Blocking of ERK1 and ERK2 sensitizes human mesothelioma cells to doxorubicin. Mol Cancer 9:1–13. https://doi.org/10.1186/1476-4598-9-314

    Article  CAS  Google Scholar 

  17. Byron SA, Loch DC, Pollock PM (2012) Fibroblast growth factor receptor inhibition synergizes with paclitaxel and doxorubicin in endometrial cancer cells. Int J Gynecol Cancer 22:1517–1526. https://doi.org/10.1097/IGC.0b013e31826f6806

    Article  PubMed  Google Scholar 

  18. Sergei B, Pavel D, Aigul G et al (2020) Inhibition of FGFR2-signaling attenuates a homology-mediated dna repair in gist and sensitizes them to DNA-topoisomerase II inhibitors. Int J Mol Sci 21:352. https://doi.org/10.3390/ijms21010352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879. https://doi.org/10.1002/cncr.11407

    Article  CAS  PubMed  Google Scholar 

  20. Vishnu T, Veerabhadraiah M, Krishna Chaitanya V et al (2022) Design, synthesis and anticancer activity of 5-((2-(4-bromo/chloro benzoyl) benzofuran-5-yl) methyl)-2-((1-(substituted)-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde analogues. Mol Divers. https://doi.org/10.1007/s11030-022-10575-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vasava MS, Bhoi MN, Rathwa SK et al (2020) Benzimidazole: a milestone in the field of medicinal chemistry. Mini Rev Med Chem 20:532–565

    Article  CAS  PubMed  Google Scholar 

  22. Pérez-Villanueva J, Santos R, Hernández-Campos A et al (2011) Structure–activity relationships of benzimidazole derivatives as antiparasitic agents: Dual activity-difference (DAD) maps. Med Chem Commun 2:44–49. https://doi.org/10.1039/C0MD00159G

    Article  Google Scholar 

  23. Shingalapur RV, Hosamani KM, Keri RS, Hugar MH (2010) Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur J Med Chem 45:1753–1759. https://doi.org/10.1016/j.ejmech.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  24. Siddiqui N, Alam MS, Sahu M et al (2016) Antidepressant, analgesic activity and SAR studies of substituted benzimidazoles. Asian J Pharm Res 6:170. https://doi.org/10.5958/2231-5691.2016.00024.1

    Article  Google Scholar 

  25. Wang XJ, Xi MY, Fu JH et al (2012) Synthesis, biological evaluation and SAR studies of benzimidazole derivatives as H1-antihistamine agents. Chin Chem Lett 23:707–710. https://doi.org/10.1016/j.cclet.2012.04.020

    Article  CAS  Google Scholar 

  26. Ganie AM, Dar AM, Khan FA, Dar BA (2019) Benzimidazole derivatives as potential antimicrobial and antiulcer agents: a mini review. Mini-Rev Med Chem 19:1292–1297. https://doi.org/10.2174/1381612824666181017102930

    Article  CAS  PubMed  Google Scholar 

  27. Jain A, Sharma R, Chaturvedi SC (2013) A rational design, synthesis, characterization, and antihypertensive activities of some new substituted benzimidazoles. Med Chem Res 22:4622–4632. https://doi.org/10.1007/s00044-012-0462-7

    Article  CAS  Google Scholar 

  28. Kanwal A, Ahmad M, Aslam S et al (2019) Recent advances in antiviral benzimidazole derivatives: a mini review. Pharm Chem J 53:179–187. https://doi.org/10.1007/s11094-019-01976-3

    Article  CAS  Google Scholar 

  29. Othman DIA, Hamdi A, Tawfik SS et al (2023) Identification of new benzimidazole-triazole hybrids as anticancer agents: multi-target recognition, in vitro and in silico studies. J Enzyme Inhib Med Chem 38:2166037

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ouahrouch A, Ighachane H, Taourirte M et al (2014) Benzimidazole-1,2,3-triazole hybrid molecules: synthesis and evaluation for antibacterial/antifungal activity. Arch Pharm (Weinheim) 347:748–755. https://doi.org/10.1002/ardp.201400142

    Article  CAS  PubMed  Google Scholar 

  31. Bansal Y, Silakari O (2014) Synthesis and pharmacological evaluation of polyfunctional benzimidazole-NSAID chimeric molecules combining anti-inflammatory, immunomodulatory and antioxidant activities. Arch Pharm Res 37:1426–1436

    Article  CAS  PubMed  Google Scholar 

  32. Syed A, Syeda A (2008) Spectrophotometric determination of certain benzimidazole proton pump inhibitors. Indian J Pharm Sci 70:507. https://doi.org/10.4103/0250-474X.44605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pathare B, Bansode T (2021) Review- biological active benzimidazole derivatives. Results Chem 3:100200. https://doi.org/10.1016/j.rechem.2021.100200

    Article  CAS  Google Scholar 

  34. Law CSW, Yeong KY (2021) Benzimidazoles in Drug Discovery: A Patent Review. ChemMedChem 16:1861–1877. https://doi.org/10.1002/cmdc.202100004

    Article  CAS  PubMed  Google Scholar 

  35. Ren Y, Wang Y, Li G et al (2021) Discovery of Novel Benzimidazole and Indazole Analogues as Tubulin Polymerization Inhibitors with Potent Anticancer Activities. J Med Chem 64:4498–4515. https://doi.org/10.1021/acs.jmedchem.0c01837

    Article  CAS  PubMed  Google Scholar 

  36. Akhtar MdJ, Yar MS, Sharma VK et al (2020) Recent Progress of Benzimidazole Hybrids for Anticancer Potential. Curr Med Chem 27:5970–6014. https://doi.org/10.2174/0929867326666190808122929

    Article  CAS  PubMed  Google Scholar 

  37. Wu K, Peng X, Chen M et al (2022) Recent progress of research on anti-tumor agents using benzimidazole as the structure unit. Chem Biol Drug Des 99:736–757. https://doi.org/10.1111/cbdd.14022

    Article  CAS  PubMed  Google Scholar 

  38. Ali AM, Tawfik SS, Mostafa AS, Massoud MAM (2022) Benzimidazole-based protein kinase inhibitors: Current perspectives in targeted cancer therapy. Chem Biol Drug Des 100:656–673. https://doi.org/10.1111/cbdd.14130

    Article  CAS  PubMed  Google Scholar 

  39. Tan YJ, Lee YT, Yeong KY et al (2018) Anticancer activities of a benzimidazole compound through sirtuin inhibition in colorectal cancer. Future Med Chem 10:2039–2057. https://doi.org/10.4155/fmc-2018-0052

    Article  CAS  PubMed  Google Scholar 

  40. Coleman RL, Fleming GF, Brady MF et al (2019) Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N Engl J Med 381:2403–2415. https://doi.org/10.1056/NEJMoa1909707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen J, Li N, Liu B et al (2020) Pracinostat (SB939), a histone deacetylase inhibitor, suppresses breast cancer metastasis and growth by inactivating the IL-6/STAT3 signalling pathways. Life Sci 248:117469. https://doi.org/10.1016/j.lfs.2020.117469

    Article  CAS  PubMed  Google Scholar 

  42. Barman Balfour JA, Goa KL (2001) Bendamustine. Drugs 61:631–638. https://doi.org/10.2165/00003495-200161050-00009

    Article  Google Scholar 

  43. Markham A, Keam SJ (2020) Selumetinib: first approval. Drugs 80:931–937. https://doi.org/10.1007/s40265-020-01331-x

    Article  CAS  PubMed  Google Scholar 

  44. Woodfield SE, Zhang L, Scorsone KA et al (2016) Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression. BMC Cancer 16:172. https://doi.org/10.1186/s12885-016-2199-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bryson HM, Wagstaff AJ (1996) Liarozole. Drugs Aging 9:478–484. https://doi.org/10.2165/00002512-199609060-00010

    Article  CAS  PubMed  Google Scholar 

  46. Akhter M, Habibullah S, Hasan SM et al (2011) Synthesis of some new 3,4-dihydro-2H-1,3-benzoxazines under microwave irradiation in solvent-free conditions and their biological activity. Med Chem Res 20:1147–1153. https://doi.org/10.1007/s00044-010-9451-x

    Article  CAS  Google Scholar 

  47. Kakkerla R, Marri S, Krishna MPSM et al (2018) Synthesis and biological evaluation of 3,4-dihydro-3-(3-methylisoxazol-5- yl)-2H-benzo[e] [1,3] oxazine derivatives as anticancer agents. Lett Org Chem. https://doi.org/10.2174/1570178614666170623121207

    Article  Google Scholar 

  48. Mathew BP, Kumar A, Sharma S et al (2010) An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. Eur J Med Chem 45:1502–1507. https://doi.org/10.1016/j.ejmech.2009.12.058

    Article  CAS  PubMed  Google Scholar 

  49. Kategaonkar AH, Sonar SS, Pokalwar RU et al (2010) An efficient synthesis of 3,4-dihydro-3-substituted-2H-naphtho[2,1-e] [1,3]o xazine derivatives catalyzed by zirconyl(IV) chloride and evaluation of its biological activities. Bull Korean Chem Soc 31:1657–1660. https://doi.org/10.5012/bkcs.2010.31.6.1657

    Article  CAS  Google Scholar 

  50. Kang Y-G, Park C-Y, Shin H et al (2015) Synthesis and anti-tubercular activity of 2-nitroimidazooxazines with modification at the C-7 position as PA-824 analogs. Bioorg Med Chem Lett 25:3650–3653. https://doi.org/10.1016/j.bmcl.2015.06.060

    Article  CAS  PubMed  Google Scholar 

  51. Zhang H-J, Li Y-F, Cao Q et al (2017) Pharmacological evaluation of 9,10-dihydrochromeno[8,7-e] [1,3] oxazin-2(8H)-one derivatives as potent anti-inflammatory agent. Pharmacol Rep 69:419–425. https://doi.org/10.1016/j.pharep.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  52. Chen C-L, Lee C-C, Liu F-L et al (2016) Design, synthesis and SARs of novel salicylanilides as potent inhibitors of RANKL-induced osteoclastogenesis and bone resorption. Eur J Med Chem 117:70–84. https://doi.org/10.1016/j.ejmech.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  53. Gawali R, Trivedi J, Bhansali S et al (2018) Design, synthesis, docking studies and biological screening of 2-thiazolyl substituted -2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines as potent HIV-1 reverse transcriptase inhibitors. Eur J Med Chem 157:310–319. https://doi.org/10.1016/j.ejmech.2018.07.067

    Article  CAS  PubMed  Google Scholar 

  54. Ho Y-J, Lu J-W, Ho L-J et al (2019) Anti-inflammatory and anti-osteoarthritis effects of Cm-02 and Ck-02. Biochem Biophys Res Commun 517:155–163. https://doi.org/10.1016/j.bbrc.2019.07.036

    Article  CAS  PubMed  Google Scholar 

  55. Ihmaid S, Al-Rawi J, Bradley C et al (2011) Synthesis, structural elucidation, DNA-PK inhibition, homology modelling and anti-platelet activity of morpholino-substituted-1,3-naphth-oxazines. Bioorg Med Chem 19:3983–3994. https://doi.org/10.1016/j.bmc.2011.05.032

    Article  CAS  PubMed  Google Scholar 

  56. Viegas-Junior C, Danuello A, da Silva BV et al (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14:1829–1852

    Article  CAS  PubMed  Google Scholar 

  57. Ivasiv V, Albertini C, Gonçalves AE et al (2019) Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Curr Top Med Chem 19:1694–1711

    Article  CAS  PubMed  Google Scholar 

  58. Fraga CAM (2009) Drug hybridization strategies: before or after lead identification? Expert Opin Drug Discov 4:605–609

    Article  CAS  PubMed  Google Scholar 

  59. Nagamani M, Vishnu T, Jalapathi P, Srinivas M (2022) Molecular docking studies on COVID-19 and antibacterial evaluation of newly synthesized 4-(methoxymethyl)-1,2,3-triazolean analogues derived from (E)-1-phenyl-3-(2-(piperidin-1-yl)quinolin-3-yl) prop-2-en-1-one. J Iran Chem Soc 19:1049–1060. https://doi.org/10.1007/s13738-021-02365-y

    Article  CAS  Google Scholar 

  60. Veeranna D, Ramdas L, Ravi G et al (2022) Synthesis of 1,2,3-triazole tethered indole derivatives: evaluation of anticancer activity and molecular docking studies. ChemistrySelect 7:e202201758. https://doi.org/10.1002/slct.202201758

    Article  CAS  Google Scholar 

  61. Liu Z, Liu Y, Zeng G et al (2018) Application of molecular docking for the degradation of organic pollutants in the environmental remediation: a review. Chemosphere 203:139–150. https://doi.org/10.1016/j.chemosphere.2018.03.179

    Article  CAS  PubMed  Google Scholar 

  62. Morris GM, Ruth H, Lindstrom W et al (2009) Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem NA-NA. https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  64. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  65. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. In: Hempel JE, Williams CH, Hong CC (eds) Methods in Molecular Biology. Springer, pp 243–250

    Google Scholar 

  66. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Prot: Struct Funct Bioinform 52:609–623. https://doi.org/10.1002/prot.10465

    Article  CAS  Google Scholar 

  67. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489. https://doi.org/10.1006/jmbi.1996.0477

    Article  CAS  PubMed  Google Scholar 

  68. Bitencourt-Ferreira G, de Azevedo WF (2019) Molegro Virtual Docker for Docking. In: Filgueira W, de Azevedo, (eds) Docking screens for drug discovery. Springer, New York

    Google Scholar 

  69. Acharya R, Chacko S, Bose P et al (2019) Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci Rep 9:15743. https://doi.org/10.1038/s41598-019-52162-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yun C-H, Boggon TJ, Li Y et al (2007) Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11:217–227. https://doi.org/10.1016/j.ccr.2006.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seshacharyulu P, Ponnusamy MP, Haridas D et al (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31. https://doi.org/10.1517/14728222.2011.648617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Perike N, Edigi PK, Nirmala G, et al (2022) Synthesis, Anticancer Activity and Molecular Docking Studies of Hybrid Molecules Containing Indole-Thiazolidinedione-Triazole Moieties. ChemistrySelect. https://doi.org/10.1002/slct.202203778

  73. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:1–13

    Article  Google Scholar 

  74. Martin YC (2005) A bioavailability score. J Med Chem 48:3164–3170. https://doi.org/10.1021/jm0492002

    Article  CAS  PubMed  Google Scholar 

  75. Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  PubMed  Google Scholar 

  76. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1:1–11

    Article  Google Scholar 

  77. Sabhavath AK, Madderla S, Dharavath R et al (2022) Synthesis of 1,2,3-triazole-containing 2,3-dihydrofuran derivatives, evaluation of anticancer activity and molecular docking studies. ChemistrySelect 7:e202203847. https://doi.org/10.1002/slct.202203847

    Article  CAS  Google Scholar 

  78. Ashok D, Thara G, Kumar BK et al (2023) Microwave-assisted synthesis, molecular docking studies of 1,2,3-triazole-based carbazole derivatives as antimicrobial, antioxidant and anticancer agents. RSC Adv 13:25–40. https://doi.org/10.1039/D2RA05960F

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author Srinivas Gali is thankful to the Head, Department of Chemistry, Satavahana University, Karimnagar, Telangana, India for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Contributions

SG and DR carried out all experiments, VM analyzed all spectral data, VT wrote manuscript and performed molecular docking studies, NV monitored the entire work.

Corresponding author

Correspondence to Namratha Vaddiraju.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3593 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gali, S., Raghu, D., Mallikanti, V. et al. Design, synthesis of benzimidazole tethered 3,4-dihydro-2H-benzo[e] [1, 3] oxazines as anticancer agents. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10661-3

Keywords

Navigation