Skip to main content

Advertisement

Log in

A review on ‘triazoles’: their chemistry, synthesis and pharmacological potentials

  • Review
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Heterocyclic compounds are cyclic compounds as an atom of ring members with at least two different elements. In the five-membered aromatic azole chain, triazole compounds containing two carbon and three nitrogen atoms are readily capable of binding in the biological system with a variety of enzymes and receptors and thus show versatile biological activities. In the 1960s, the Janseen Group discovered the first compound of this class. Triazole commonly called pyrrodiazole is nitrogenous heterocyclic moiety and has molecular formula C2H3N3. Triazole nucleus is present as a central structural component in a number of drug classes such as antibacterial, antifungal, anticancer, antioxidant, antiviral, anti-inflammatory, analgesic, antiepileptic, antihypertensive, antidepressant, antidiabetic, antianxiety and antitubercular. The commercially available triazole-containing drugs are fluconazole, voriconazole (antifungal), trazodone, nefazodone (antidepressant), trapidil (antihypertensive), estazolam (sedative-hypnotic), rufinamide (antiepileptic) and so on. This paper aims to analyze the synthesis and pharmacological activities recorded in the current literature for triazole derivatives.

Graphical abstract

Along with the therapeutic importance of triazole derivatives as confirmed in the literature, it was decided to synthesize and study their antimicrobial, antioxidant and antiviral potential of substituted 1,2,4-triazole analogues. The literature-based design of triazole moiety is present in Fig 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26

Similar content being viewed by others

Availability of data and materials

All data are provided in the manuscript or cited in the references.

Abbreviations

MP:

Melting point

BP:

Boiling point

MIC:

Minimum inhibitory concentration

HeLA:

Henrietta lacks

DPPH:

2, 2-Diphenyl-1-picrylhydrazyl

BHA:

Butylated hydroxy anisole

BHT:

Butylated hydroxy toluene

IC50 :

Half maximal inhibitory concentration

SC50 :

Half maximal stimulatory concentration

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

SEM:

Scanning electron microscope

CPE:

Carrageenan paw edema

PMNL:

Polymorphonuclear leukocytes

5-Fu:

5-Fluorouracil

References:

  1. A.M. Abdel-Megeed, H.M. Abdel-Rahman, G.E.S. Alkaramany, M.A. El-Gendy, Design, synthesis and molecular modeling study of acylated 1, 2, 4-triazole-3-acetates with potential anti-inflammatory activity. Euro. J. Med. Chem. 44(1), 117–123 (2009)

    Article  CAS  Google Scholar 

  2. G.E.D.A. Abuo-Rahma, M. Abdel-Aziz, E.A. Beshr, T.F. Ali, 2, 4-Triazole/oxime hybrids as new strategy for nitric oxide donors: synthesis, anti-inflammatory, ulceroginicity and antiproliferative activities. Eur. J. Med. Chem. 71, 185–198 (2014)

    Article  CAS  Google Scholar 

  3. M. Al-Amin, M.R. Islam. Synthesis of some bis-triazole derivatives as probes for cytotoxicity study.  Bangladesh J. Pharmacol. 1(1), 21–26 (2006)

  4. G. Ayhan-Kilcigil, C. Kus, T. Coban, B. Can-Eke, M. Iscan, Synthesis and antioxidant properties of novel benzimidazole derivatives. J. Enzym. Inhib. Med. Chem. 19(2), 129–135 (2004)

    Article  CAS  Google Scholar 

  5. S.F. Barbuceanu, D.C. Ilies, G. Saramet, V. Uivarosi, C. Draghici, V. Radulescu, Synthesis and antioxidant activity evaluation of new compounds from hydrazinecarbothioamide and 1, 2, 4-triazole class containing diarylsulfone and 2, 4-difluorophenyl moieties. Int. J. Mol. Sci. 15(6), 10908–10925 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. H. Bayrak, A. Demirbas, N. Demirbas, S.A. Karaoglu, Synthesis of some new 1, 2, 4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities. Eur. J. Med. Chem. 44(11), 4362–4366 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. O. Bekircan, T. Oezen, N. Gumrukcuoglu, H. Bektas, Synthesis and antioxidant properties of some new 3-(4-chlorophenyl)-5-(pyridin-4-yl)-4H-1, 2, 4-triazole derivatives. Zeitschrift. fur. Naturforschung. B. 63(5), 548–554 (2008)

    Article  CAS  Google Scholar 

  8. H. Bektaş, N. Karaali, D. Şahin, A. Demirbaş, A. Karaoglu, N. Demirbas, Synthesis and antimicrobial activities of some new 1, 2, 4-triazole derivatives. Molecules 15(4), 2427–2438 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. J. Chen, X.Y. Sun, K.Y. Chai, J.S. Lee, M.S. Song, Z.S. Quan, Synthesis and anticonvulsant evaluation of 4-(4-alkoxylphenyl)-3-ethyl-4H-1, 2, 4-triazoles as open-chain analogues of 7-alkoxyl-4, 5-dihydro [1, 2, 4] triazolo [4, 3-a] quinolines. Bioorg. Med. Chem. 15(21), 6775–6781 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. K.M. Dawood, B.F. Abdel-Wahab, M.A. Raslan, Synthesis and applications of bi-and bis-triazole systems. ARKIVOC J. Org. Chem. 15(5), 35–50 (2018)

    Google Scholar 

  11. D. Dheer, V. Singh, R. Shankar, Medicinal attributes of 1, 2, 4-triazoles: current developments. Biorg. Chem. 71, 30–54 (2017)

    Article  CAS  Google Scholar 

  12. Y.C. Duan, Y.C. Ma, E. Zhang, X.J. Shi, M.M. Wang, X.W. Ye, H.M. Liu, Design and synthesis of novel 1, 2, 3-triazole-dithiocarbamate hybrids as potential anticancer agents. Euro. J. Med. Chem. 62, 11–19 (2013)

    Article  CAS  Google Scholar 

  13. H.M. Faidallah, K.A. Khan, A.M. Asiri, Synthesis and biological evaluation of new 3, 5-di (trifluoromethyl)-1, 2, 4-triazolesulfonylurea and thiourea derivatives as antidiabetic and antimicrobial agents. J. F. Chem. 132(11), 870–877 (2011)

    Article  CAS  Google Scholar 

  14. F. Hassanzadeh, H. Sadeghi-Aliabadi, S. Nikooei, E. Jafari, G. Vaseghi, Synthesis and cytotoxic evaluation of some derivatives of triazole-quinazolinone hybrids. Res. Pharma. Sci. 14(2), 130 (2019)

    Article  Google Scholar 

  15. B.S. Holla, M. Mahalinga, M.S. Karthikeyan, B. Poojary, P.M. Akberali, N.S. Kumari, Synthesis, characterization and antimicrobial activity of some substituted 1, 2, 3-triazoles. Eur. J. Med. Chem. 40(11), 1173–1178 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. B.S. Holla, B. Veerendra, M.K. Shivananda, B. Poojary, Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1, 2, 4-triazoles. Eur. J. Med. Chem. 38(7–8), 759–767 (2003)

    Article  CAS  Google Scholar 

  17. S.C. Holm, B.F. Straub, Synthesis of n-substituted 1, 2, 4-triazoles: a review. Org. Prepar. Proced. Int. 43(4), 319–347 (2011)

    Article  CAS  Google Scholar 

  18. S. Jubie, P.N. Ramesh, P. Dhanabal, R. Kalirajan, N. Muruganantham, A.S. Antony, Synthesis, antidepressant and antimicrobial activities of some novel stearic acid analogues. Eur. J. Med. Chem. 54, 931–935 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. S. Kamal, M.J. Prabhakar, P.V. Ramaiah, C.R. Reddy, A. Reddy, M.-B. Mallareddy, Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1, 2, 3-triazole ring side-armed with alkane spacers. Eur. J. Med. Chem. 46(9), 3820–3831 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. M.M. Kamel, N.Y.M. Abdo, Synthesis of novel 1, 2, 4-triazoles, triazolothiadiazines and triazolothiadiazoles as potential anticancer agents. Eur. J. Med. Chem. 86, 75–80 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. P. Kaur, R. Kaur, M. Goswami, A review on methods of synthesis of 1, 2, 4-triazole derivatives. Int. Res. J. Pharm. 9, 1–35 (2018)

    Article  CAS  Google Scholar 

  22. G.S. Kumar, Y. Rajendraprasad, B.P. Mallikarjuna, S.M. Chandrashekar, C. Kistayya, Synthesis of some novel 2-substituted-5-[isopropylthiazole] clubbed 1, 2, 4-triazole and 1, 3, 4-oxadiazoles as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem. 45(5), 2063–2074 (2010)

    Article  CAS  Google Scholar 

  23. R.M. Kumbhare, U.B. Kosurkar, M.J. Ramaiah, T.L. Dadmal, S.N.C.V.L. Pushpavalli, M. Pal-Bhadra, Synthesis and biological evaluation of novel triazoles and isoxazoles linked 2-phenyl benzothiazole as potential anticancer agents. Bioorg. Med. Chem. 22(17), 5424–5427 (2012)

    Article  CAS  Google Scholar 

  24. K. Kushwaha, N. Kaushik, S.C. Jain, Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1, 2, 3-triazole moiety as lead antimicrobials. Bioorg. Med. Chem. 24(7), 1795–1801 (2014)

    Article  CAS  Google Scholar 

  25. J. Liu, Q. Liu, X. Yang, S. Xu, H. Zhang, R. Bai, J. Xu, Design, synthesis, and biological evaluation of 1, 2, 4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives as potential antihypertensive candidates. Bioorg. Med. Chem. 21(24), 7742–7751 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. S. Maddila, M. Momin, S. Gorle, L. Palakondu, S.B. Jonnalagadda, Synthesis and antioxidant evaluation of novel phenothiazine linked substitutedbenzylideneamino-1, 2, 4-triazole derivatives. J. Chile. Chem. Soc. 60(2), 2919–2923 (2015)

    Article  CAS  Google Scholar 

  27. J.H. Mansoory, S.S. Rajput, Synthesis, reactivity and biological evaluation of triazole: recent developments. Int. J. Pharm. Sci. 7(5), 20–32 (2017)

    Google Scholar 

  28. E. Mentese, F. Yılmaz, N. Baltas, O. Bekircan, B. Kahveci, Synthesis and antioxidant activities of some new tri-heterocyclic compounds containing benzimidazole, thiophene, and 1, 2, 4-triazole rings. J. Enzym. Inhib. Med. Chem. 30(3), 435–441 (2015)

    Article  CAS  Google Scholar 

  29. C.C. Midhula, A. Marathakam, P. Baijika, K. ShadihaSaheed, Synthesis and pharmacological activities of 1, 2, 3 triazole derivatives. Wld. J. Pharm. Sci. 7(3), 441–452 (2018)

    CAS  Google Scholar 

  30. S. Narsimha, N.S. Kumar, B.K. Swamy, N.V. Reddy, S.A. Hussain, M.S. Rao, Indole-2-carboxylic acid derived mono and bis 1, 4-disubstituted 1, 2, 3-triazoles: synthesis, characterization and evaluation of anticancer, antibacterial, and DNA-cleavage activities. Bioorg. Med. Chem. 26(6), 1639–1644 (2016)

    Article  CAS  Google Scholar 

  31. P. S. Nath, P. Ashish, M. Rupesh. Triazole: a potential bioactive agent (synthesis and biological activity).  Int. J. Res. Ayurveda Pharm. 2, 1490–1494 (2011)

  32. T. Onkol, D.S. Dogruer, L. Uzun, S. Adak, S. Ozkan, M. FethiSahin, Synthesis and antimicrobial activity of new 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives. J. Enzym. Inhib. Med. Chem. 23(2), 277–284 (2008)

    Article  CAS  Google Scholar 

  33. E. Palaska, G. Şahin, P. Kelicen, N.T. Durlu, G. Altinok, Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1, 3, 4-oxadiazoles, 1, 3, 4-thiadiazoles and 1, 2, 4-triazole-3-thiones. Farmaco 57(2), 101–107 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. T. Plech, M. Wujec, A. Siwek, U. Kosikowska, A. Malm, Synthesis and antimicrobial activity of thiosemicarbazides, s-triazoles and their Mannich bases bearing 3-chlorophenyl moiety. Eur. J. Med. Chem. 46(1), 241–248 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. S.M. Rabea, N.A. El-Koussi, H.Y. Hassan, T. Aboul-Fadl, Synthesis of 5-Phenyl-1-(3-pyridyl)-1H–1, 2, 4-triazole-3-carboxylic acid derivatives of potential anti-inflammatory activity. Int. J. Pharma. Med. Chem. 339(1), 32–40 (2006)

    CAS  Google Scholar 

  36. U. Salgın-Goksen, N. Gokhan-Kelekci, O. Goktas, Y. Koysal, E. Kılıc, S. Isık, M. Ozalp, 1-Acylthiosemicarbazides, 1, 2, 4-triazole-5 (4H)-thiones, 1, 3, 4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem. 15(17), 5738–5751 (2007)

    Article  PubMed  CAS  Google Scholar 

  37. S. Shafi, M.M. Alam, N. Mulakayala, C. Mulakayala, G. Vanaja, A.M. Kalle, M.S. Alam, Synthesis of novel 2-mercapto benzothiazole and 1, 2, 3-triazole based bis-heterocycles: their anti-inflammatory and anti-nociceptive activities. Eur. J. Med. Chem. 49, 324–333 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Shi, C.H. Zhou, Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg. Med. Chem. 21(3), 956–960 (2011)

    Article  CAS  Google Scholar 

  39. J.K. Shneine, Y.H. Alaraji. Chemistry of 1, 2, 4-triazole: a review article. Spectroscopy 9(9b), 9c (2016)

  40. B.B. Sokmen, N. Gumrukcuoglu, S. Ugras, H.I. Ugras, R. Yanardag, Synthesis, antibacterial, antielastase, antiurease and antioxidant activities of new methoxy substitued bis-1, 2, 4-triazole derivatives. J. Enzym. Inhib. Med. Chem. 28(1), 72–77 (2013)

    Article  CAS  Google Scholar 

  41. R. Udupi, Synthesis and biological screening of certain new triazole Schiff bases and their derivatives bearing substituted benzothiazole moiety. J. Chem. Pharm. Res 4, 1151–1159 (2012)

    Google Scholar 

  42. P. Valentina, K. Ilango, M. Deepthi, P. Harusha, G. Pavani, K.L. Sindhura, C.G. Keerthanan, Antioxidant activity of some substituted 1, 2, 4-triazo-5-thione Schiff base. J. Pharma. Sci. Res. 1(2), 74 (2009)

    CAS  Google Scholar 

  43. D. Verbanac, R. Malik, M. Chand, K. Kushwaha, M. Vashist, M. Matijasic, S.C. Jain, Synthesis and evaluation of antibacterial and antioxidant activity of novel 2-phenyl-quinoline analogs derivatized at position 4 with aromatically substituted 4 H-1, 2, 4-triazoles. J. Enzym. Inhib. Med. Chem. 31(sup2), 104–110 (2016)

    Article  CAS  Google Scholar 

  44. J.T. Witkowski, R.K. Robins, R.W. Sidwell, L.N. Simon, Design, synthesis and broad-spectrum antiviral activity of 1-beta-d-ribofuranosyl-1, 2, 4-triazole-3-carboxamide and related nucleosides. J. Med. Chem. 15(11), 1150–1154 (1972)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Thanks to Head Prof. Sanju Nanda, Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, for providing library and internet facilities, etc.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

PKV and RKM endeavored and accomplished the scheme; DD completed review work and wrote manuscript.

Corresponding authors

Correspondence to Prabhakar Kumar Verma or Rakesh Kumar Marwaha.

Ethics declarations

Conflict of interest

The author(s) have no conflicts of interest.

Ethics approval and consent to participate

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, D., Verma, P.K. & Marwaha, R.K. A review on ‘triazoles’: their chemistry, synthesis and pharmacological potentials. J IRAN CHEM SOC 18, 2535–2565 (2021). https://doi.org/10.1007/s13738-021-02231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02231-x

Keywords

Navigation