Skip to main content
Log in

Minimum Principle for a Composite Modeled as Two Interacting Dipolar Continua

  • Published:
Mechanics of Composite Materials Aims and scope

The present paper generalizes the results obtained by R. Reiss for classical elastic bodies to composites modeled as mixtures of dipolar elastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Eringen, Microcontinuum Field Theories I: Foundations and Solids, New York-Berlin-Heidelber, Springer-Verlag (1999).

    Book  Google Scholar 

  2. A. E. Green and R. S. Rivlin, “Multipolar continuum mechanics,” Arch. Rational Mech. Anal., 17, 113-147(1964).

    Article  Google Scholar 

  3. M. E. Gurtin, The Linear Theory of Elasticity, Handbuch der Physik, C. Truesdell (ed.), Vol. VIa/2, Berlin, Springer (1972).

  4. R. D. Mindlin, “Microstrucure in linear elasticity,” Arch. Rational Mech. Anal., 16, 51-77 (1964).

    Article  Google Scholar 

  5. M. Marin, “On weak solutions in elasticity of dipolar bodies with voids,” J. Comp. Appl. Math., 82, No. 1-2, 291-297 (1997).

    Article  Google Scholar 

  6. M. Marin, “An approach of a heat-flux dependent theory for micropolar porous media,” Meccanica, 51, No.5, 1127-1133 (2016).

    Article  Google Scholar 

  7. M. Marin, “Some estimates on vibrations in thermoelasticity of dipolar bodies,” J. Vibr. Control, 16, No. 1, 33-47 (2010).

    Article  Google Scholar 

  8. R. J. Twiss, “Theory of mixtures for micromorphic materials-II. Elastic constitutive equations,” Int. J. Eng. Sci., 10, No. 5, 437-465 (1972).

    Article  Google Scholar 

  9. N. T. Dunwoody, “Balance laws for liquid crystal mixtures,” ZAMP, 26, No. 1, 105-117 (1975).

    Google Scholar 

  10. A. C. Eringen, “Micropolar mixture theory of porous media,” J. Appl. Phys., 94, No. 6, 4184-4190 (2003).

    Article  CAS  Google Scholar 

  11. S. De Cicco and L. Nappa, “Uniqueness theorem for mixtures with memory,” Appl. Math. Infor., 13, No. 1, 13-23 (2008).

    Google Scholar 

  12. D. Iesan, “Method of potentials in elastostatics of solids with double porosity,” Int. J. Eng. Sci., 88, 118-127 (2015).

    Article  Google Scholar 

  13. E. Fried and M. E. Gurtin, “Thermomechanics of the interface between a body and its environment,” Continuum Mech. Therm., 19, No. 5, 253-271 (2007).

    Article  Google Scholar 

  14. R. Picard, S. Trostorff, and M. Waurick, “On some models for elastic solids with micro-structure,” ZAMM, J. Appl. Math. Mech., 95, No. 7, 664-689 (2015).

    Google Scholar 

  15. M. Marin and D. Baleanu, “On vibrations in thermoelasticity without energy dissipation for micropolar bodies,” BoundValueProbl., No. 111, 1-19 (2016)

  16. H. Altenbach and V. A. Eremeyev, “Vibration analysis of non-linear 6-parameter prestressed shells,” Meccanica, 49, No. 8, 1751-1761 (2014).

    Article  Google Scholar 

  17. M. Weps, K. Naumenkoand, and H. Altenbach, “Unsymmetric three-layer laminate with soft core for photovoltaic modules,” Compos. Struct., 105, 322-339 (2013).

    Article  Google Scholar 

  18. H. Altenbach, K. Naumenko, G. Lvov, V. Sukiasov and A. Podgorny, “Prediction of accumulation of technological stresses in a pipeline upon its repair by a composite band,” Mech. Compos. Mater., 51, No. 2, 139-156 (2015).

    Article  Google Scholar 

  19. H. J. Li, A. Öchsner, et al., “Crystal plasticity finite element modelling of the effect of friction on surface asperity flattening in cold uniaxial planar compression,” Appl. Surf. Sci., 359, 236-244 (2015).

    Article  CAS  Google Scholar 

  20. M. Marin and E. M. Craciun, “Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials,” Composites: Part B, 126, 27-37 (2017).

    Article  Google Scholar 

  21. M. Marin and A. Öchsner, “The effect of a dipolar structure on the H¨older stability in Green–Naghdi thermoelasticity,” Continuum Mech. Therm., 29, No. 6, 1365-1374 (2017).

    Article  Google Scholar 

  22. R. Reiss, “Minimum principles for linear elastodynamics,” J. Elast., 8, No. 1, 35-46 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Marin.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 54, No. 4, pp. 761-780, July-August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, M., Öchsner, A. & Vlase, S. Minimum Principle for a Composite Modeled as Two Interacting Dipolar Continua. Mech Compos Mater 54, 523–536 (2018). https://doi.org/10.1007/s11029-018-9761-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-018-9761-5

Keywords

Navigation