Skip to main content
Log in

The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This study is concerned with the mixed initial boundary value problem for a dipolar body in the context of the thermoelastic theory proposed by Green and Naghdi. For the solutions of this problem we prove a result of Hölder’s-type stability on the supply terms. We impose middle restrictions on the thermoelastic coefficients, which are common in continuum mechanics. For the same conditions we propose a continuous dependence result with regard to the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, A.E., Naghdi, P.M.: Re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432, 1171–1194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Green, A.E., Naghdi, P.M.: On undamped heat wave in elastic solids. J. Therm. Stress 15(2), 253–264 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 9, 1–8 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choudhuri, S.K.R.: On a thermoelastic three-phase-lag model. J. Therm. Stress 30(3), 231–238 (2007)

    Article  Google Scholar 

  5. Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)

    Article  MATH  Google Scholar 

  6. Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    Book  MATH  Google Scholar 

  7. Iesan, D., Ciarletta, M.: Non-Classical Elastic Solids. Longman Scientific and Technical, Harlow (1993)

    MATH  Google Scholar 

  8. Sharma, K., Marin, M.: Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space. U.P.B. Sci. Bull. Ser. A Appl. Math. Phys. 75(2), 121–132 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Marin, M.: A domain of influence theorem for microstretch elastic materials. Nonlinear Anal. RWA 11(5), 3446–3452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Marin, M.: Harmonic vibrations in thermoelasticity of microstretch materials. ASME J. Vibr. Acoust. 132(4), 044501-044501-6 (2010). doi:10.1115/1.4000971

    Article  Google Scholar 

  11. Straughan, B.: Heat waves. In: Applied Mathematical Sciences, vol. 177. Springer, New York (2011)

  12. Sharma, K., Marin, M.: Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. An. Sti. Univ. Ovidius Constanta 22(2), 151–175 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fried, E., Gurtin, M.E.: Thermomechanics of the interface between a body and its environment. Contin. Mech. Thermodyn. 19(5), 253–271 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. John, F.: Continuous dependence on data for solutions of partial differential equations with a prescribed bound. Commun. Pure Appl. Math. 13, 551–585 (1960)

    Article  MATH  Google Scholar 

  17. Quintanilla, R.: Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete Contin. Dyn. Syst. Ser. B 1, 463–470 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ames, K.A., Payne, L.E.: Continuous dependence on initial-time geometry for a thermoelastic system with sign-indefinite elasticities. J. Math. Anal. Appl. 189, 693–714 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ames, K.A., Straughan, B.: Continuous dependence results for initially prestressed thermoelastic bodies. Int. J. Eng. Sci. 30, 7–13 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wilkes, N.S.: Continuous dependence and instability in linear thermoelasticity. SIAM J. Math. Anal. 11, 292–299 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Majeed, A., Zeeshan, A., Ellahi, R.: Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux. J. Mol. Liq. 223, 528–533 (2016)

    Article  Google Scholar 

  22. Zeeshan, A., Majeed, A., Ellahi, R.: Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. J. Mol. Liq. 215, 549–554 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Marin.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, M., Öchsner, A. The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity. Continuum Mech. Thermodyn. 29, 1365–1374 (2017). https://doi.org/10.1007/s00161-017-0585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0585-7

Keywords

Navigation