Skip to main content
Log in

High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures. A Review.

  • Published:
Mechanics of Composite Materials Aims and scope

The paper reviews the characterization of high-performance hybrid textile composites and their hybridization effects of composite’s behavior. Considered are research works based on the finite-element modeling, simulation, and experimental characterization of various mechanical properties of such composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. F. Cardarelli, Materials Handbook-A Concise Desktop Reference, 2nd edition, Springer-Verlag London (2008).

    Google Scholar 

  2. M. T. Isa, A. S. Ahmed, B. O. Aderemi, R. M. Taib, and I. A. Mohammed-dabo, “Effect of fiber type and combinations on the mechanical , physical and thermal stability properties of polyester hybrid composites,” Composites: Part B, 52, 217-223 (2013).

  3. A. K. Kaw, Mechanics of Composite Materials, 2nd edition, CRC Press, Boca Raton, FL, USA (2006).

    Google Scholar 

  4. G. A. Teters and A. F. Kregers, “Multi-objective optimization of composite structures. A Review,” Mech. Compos. Mater., 32, No. 3, 252-260 (1996).

    Article  Google Scholar 

  5. D. Hull and T. W. Clyne, An Introduction to Composite Materials, 2nd edition, Cambridge University Press, UK (1996).

    Book  Google Scholar 

  6. F. L. Matthews and R. D. Rawlings, Composite Materials: Engineering and Science, Woodhead Publishing Ltd, England (1999).

    Google Scholar 

  7. O. Bacarreza, P. Wen, and M.H. Aliabadi, in: M. H. Aliabadi (editor), Woven Composites: Computational and Experimental Methods in Structures-Vol. 6, Ch. 1, Imperial College Press, London, UK (2015), pp. 1-74.

    Google Scholar 

  8. M. M. Shokrieh and M. N. Fakhar, “Experimental, analytical, and numerical studies of composite sandwich panels under low-velocity impact loadings,” Mech. Compos. Mater., 47, No. 6, 643-658 (2012).

    Article  Google Scholar 

  9. S. N. A. Safri, M.T.H. Sultan, N. Yidris, and F. Mustapha, “Low velocity and high velocity impact test on composite materials-A Review,” Int. J. Eng. and Sci., 3, Iss. 9, 50-60 (2014).

  10. R. Vrashney and A. Madahar, “Innovations in textile composite designing and their applications,” Int. J. Computer Applications (0975-8887), (2015).

  11. D. D. L. Chung, Composite Materials: Science and Applications, 2nd edition, Springer-Verlag London (2010).

    Book  Google Scholar 

  12. J. S. Colton, Composite Processing: Version 1, Georgia Institute of Technology, USA (2011).

    Google Scholar 

  13. F.C. Campbell, Manufacturing Processes for Advanced Composite, Elsevier Advanced Technology, UK (2003).

    Google Scholar 

  14. W. Hufenbach, L. Kroll, O. Täger, and B. Zhou, “Material-adapted design of textile- reinforced composite structures with optimized vibro-acoustic and damping properties including shear effects,” Mech. Compos. Mater., 41, No. 3, 195-204 (2005).

    Article  Google Scholar 

  15. C. Thanomslip and P. J. Hogg, “Penetration impact resistance of hybrid composites on commingled yarn fabrics”, Composite Science Technology, 63, 467-482 (2003).

    Article  Google Scholar 

  16. S. S. Morye, P. J. Hine, R. A. Duckett, D. J. Carr, and I. M. Ward, “Modeling the effect of the energy absorption by polymer composites upon ballistic impact,” Compos. Sci. Technol., 60, 2631-2642 (2000).

    Article  Google Scholar 

  17. W. Wong, I. Horsfall, S. M. Champion, and C. H. Watson, “The effect of matrix type on the ballistic and mechanical performance of E-Glass composite armour,” 19th Int. Symp. of Ballistic, Switzerland, May, 7-11 (2001).

  18. K. Majeed, M. Jawaid, A. Hassan, A. Abu Bakar, H. P. S. A. Khalil, A. A. Salema, and I. Inuwa, “Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites,” Mater. and Design, 46, 391-410 (2013).

    Article  Google Scholar 

  19. C. M. Pastore, “Opportunities and challenges for textile reinforced composites”, Mech. Compos. Mater., 36, No. 2, 97-116 (2000).

    Article  Google Scholar 

  20. A. Dixit and H. S. Mali, “Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: A Review,” Mech. Compos. Mater., 49, No. 1, 1-20 (2013).

    Article  Google Scholar 

  21. R. L. Ramkumar and P.C. Chen, “Low-velocity impact response of laminated plates,” Am. Institute of Aeronautics and Astronautics J., 21, 1448-1452 (1983).

    Article  Google Scholar 

  22. J. M. Whitney and N. J. Pagano, “Shear deformation in heterogeneous anisotropic plates,” ASME J. Appl. Mech., 37, 1031-1036 (1970).

    Article  Google Scholar 

  23. B. V. Sankar, “Scaling of low-velocity impact for symmetric composite laminates,” J. of Reinforced Plastics and Composites, 11, 297-305 (1992).

    Article  Google Scholar 

  24. J. M. Yang, C. L. Ma, and T. W. Chou, “Fiber inclination model of three-dimensional textile structural composites,” J. Compos. Mater., 20, 472-483 (1986).

    Article  Google Scholar 

  25. G. Zhou, X. Sun, and Y. Wang, “Multi-chain digital element analysis in textile mechanics,” Compos. Sci. Technol., 64, 239-244 (2004).

    Article  Google Scholar 

  26. S. A. Tabatabaei, S.V. Lomov, and I. Verpoest, “Assessment of embedded element technique in meso-FE modelling of fibre reinforced composites,” Compos. Struct., 107, 436-446 (2014).

    Article  Google Scholar 

  27. N. K. Naik and V. K. Ganesh, “Prediction of on-axes elastic properties of plain weave fabric composites,” Compos. Sci. and Technol., 45, 135-152 (1992).

    Article  Google Scholar 

  28. C. C. Yang, T. Ngo, and P. Tran, “Influences of weaving architectures on the impact resistance of multi-layer fabrics,” Materials and Design, 85, 282-295(2015).

    Article  Google Scholar 

  29. M. Al-Haik, A. Y. Borujeni, and M. Tehrani, in: X. Chen (editor), Advanced Fibrous Composite Materials for Ballistic Protection, Ch. 5, Woodhead Publishing Series in Composites Science and Engineering: Number 66, UK (2016), pp. 121-143.

  30. A. Dixit, R. K. Misra, and H. S. Mali, “Finite element analysis of quasi-static indentation of woven fabric textile composites using different nose shape indenters,” Materialwissenschaft und Werkstofftechnik, 46, No. 10, 1014-1028 (2015).

    Article  Google Scholar 

  31. S. P. Yushanov and A. E. Bogdanovich, “Fiber waviness in textile composites and its stochastic modeling,” Mech. Compos. Mater., 36, No. 4, 297-318 (2000).

    Article  Google Scholar 

  32. R. Nadlene, S. M. Sapuan, M. Jawaid, M. R. Ishak, and L. Yusriah, “A Review on roselle fiber and its composites,” J. Natural Fibers, 13, 1, 10-41 (2016).

    Article  Google Scholar 

  33. A. Dixit, H. S. Mali, and R. K. Misra, “Micromechanical unit cell model of 2×2 twill woven fabric textile composite for multi scale analysis,” J. Institution of Engineers, Series E, 95, No. 1, 1-9 (2014).

    Article  Google Scholar 

  34. N. K. Naik, Y. Chandrashekhar, and S. Mduri, “Polymer matrix woven fabric composites subjected to low velocity impact: Part-I. Damage initiation studies,” J. Reinforced Plastics and Composites, 19, No.12, 912-943 (2000).

  35. S. Nguyen, T. James, and L. Iannucci, “Low, medium and high velocity impact on composites,” 16th Int. Conf. on Composite Structures, ICCS 16.

  36. T. J. Singh and S. Samanta, “Characterization of Kevlar fiber and its composites: A Review,” Materials Today: Proc. 2, 1381-1387 (2015).

    Article  Google Scholar 

  37. P. Potluriandand and A. Manan, “Mechanics of non-orthogonally interlaced textile composites,” Composites:Part A: Appl. Sci. and Manufact., 38, 1216-1226 (2007).

    Article  Google Scholar 

  38. W. Hufenbach, R. Böhm, L. Kroll, and A. Langkamp, “Theoretical and experimental investigation of anisotropic damage in textile-reinforced composite structures,” Mech. Compos. Mater., 40, No. 6, 519-532 (2004).

    Article  Google Scholar 

  39. M. Nirbhay, R. K. Misra, and A. Dixit. “Finite-element analysis of jute-and coir-fiber-reinforced hybrid composite multipanel plates,” Mech. Compos. Mater., 51, No.4, 505-520 (2015).

  40. URL:http://www.engineeredmaterialsinc.com/products/structural-composites-and-sandwhich-panels/

  41. M. M. Thwe and K. Liao, “Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites,” Compos. Sci. Technol., 63, 375-387 (2003).

    Article  Google Scholar 

  42. S. Y. Fu, G. Xu, and Y. W. Mai, “On the elastic modulus of hybrid particle/short-fiber/polymer composites,” Composites: B Eng., 33, 291-299 (2002).

    Article  Google Scholar 

  43. N. Saba, P. Md. Tahir, and Md. Jawaid, “A Review on potentiality of nano filler/natural fiber filled polymer hybrid composites,” Polymers, 6, 2247-2273 (2014).

    Article  Google Scholar 

  44. R. K. Misra, A. Dixit, and H. S. Mali, “Finite element shear modeling of woven fabric textile composite,” Proc. Mater. Sci., 6, 1344-1350 (2014).

    Article  Google Scholar 

  45. N. K. Naik, Y. C. Sekher, and S. Meduri, “Damage in woven-fabric composites subjected to low-velocity impact,” Compos. Sci. Technol., 731-744 (2000).

  46. G. Marom, E. Drukker, A. Weinberg, and J. Banbaji, “Impact behavior of carbon/Kevlar hybrid composites,” Composites, 17, No 2, April, 150-153 (1986).

  47. M. S. Sreekala, M. G. Kumaran, M. L. Geethakumariamma, and S. Thomas, “Environmental effects in oil palm fiber reinforced phenol formaldehyde composites: Studies on thermal, biological, moisture and high energy radiation effects,” Advanced Compos. Mater., 13, 171-197 (2004).

    Article  Google Scholar 

  48. S. Mishra, A. Mohanty, L. Drzal, M. Misra, S. Parija, S. Nayak, and S. Tripathy, “Studies on mechanical performance of biofiber/glass reinforced polyester hybrid composites,” Compos. Sci. Technol., 63, 1377-1385 (2003).

    Article  Google Scholar 

  49. K. G. Satyanarayana, K. Sukumaran, A. G. Kulkarni, S. G. K. Pillai, and P. K. Rohatgi, “Fabrication and properties of natural fiber-reinforced polyester composites,” Composites, 17, 329-333 (1986).

    Article  Google Scholar 

  50. A. Pegoretti, E. Fabbri, C. Migliaresi, and F. Pilati, “Intraply and interply hybrid composites based on E-glass and poly(vinyl alcohol) woven fabrics: tensile and impact properties,” Polymer International, 53, 1290-1297 (2004).

    Article  Google Scholar 

  51. A. K. Mohanty, M. Misra, and L. T. Drzal, “Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world,” J. of Polymers and Environment, 10, 19-26 (2002).

    Article  Google Scholar 

  52. Y. Swolfs, L. Gorbatikh, and I. Verpoest, “Fiber hybridisation in polymer composites: a review,” Composites: Part A: Appl. Sci. Manufact., 67, 181-200, (2014).

    Article  Google Scholar 

  53. M. Uyaner and M. Kara, “Dynamic response of laminated composites subjected to low-velocity impact,” J. Compos. Mater., 41, No. 24, 2877-2896 (2007)

    Article  Google Scholar 

  54. P. J. Hazell and G. J. Appleby-Thomas, “The impact of structural composite materials. Part 1: Ballistic impact,” J. Strain Analysis, 47, No. 7, 396-405 (2012).

    Article  Google Scholar 

  55. O. Grāpis, V. Tamužs, N. Ohlson, J. Andersons, and U. Vilks, “Application of CFRP as a rotor shaft material,” Mech. Compos. Mater., 31, No. 2, 163-173 (1995).

    Article  Google Scholar 

  56. M. Nirbhay, A. Dixit, R. K. Misra, and H. S. Mali, “Tensile test Simulation of CFRP test specimen using finite elements,” Proc. Mater. Sci., 5, 267-273 (2014).

    Article  Google Scholar 

  57. B. Z. Jang, L. C. Chen, C. Z. Wang, H. T. Lin, and R. H. Zee, “Impact resistance and energy absorption mechanisms in hybrid composites,” Compos. Sci. and Technol. 34, Iss. 4, 305-335 (1989).

  58. S. F. Chen and B. Z. Jang, “Fracture behavior of interleaved fiber-resin composites,” Compos. Sci. Technol., 41, Iss. 1, 77-97 (1992).

  59. S. N. Yadav, V. Kumar, and S. K. Verma, “Fracture toughness behavior of carbon fiber epoxy composite with Kevlar reinforced interleave,” Mater. Sci. Eng. B, 132, 108-112 (2006).

    Article  Google Scholar 

  60. A. Dixit, H. S. Mali, and R. K. Misra, “Investigation of the thermomechanical behavior of a 2× 2 twill weave fabric advanced textile composite,” Mech. Compos. Mater., 51, No. 2, 253-264 (2015).

    Article  Google Scholar 

  61. W. J. Cantwell and J. Morton, “Detection of impact damage in CFRP laminates,” Compos. Struct., 3, 241-257 (1985).

    Article  Google Scholar 

  62. W. J. Cantwell, “The influence of target geometry on the high velocity impact response of CFRP,” Compos. Struct., 10, 247-265 (1988).

    Article  Google Scholar 

  63. W. J. Cantwell and J. Morton, “The influence of varying projectile mass on the impact response of CFRP,” Compos. Struct., 13, 101-114 (1989).

    Article  Google Scholar 

  64. S. R. Reid and H. M. Wen, in: S. R. Reid and G. Zhou (eds.), Impact behavior of fibre-reinforced composite materials and structures, Ch. 8, Woodhead Publishing Ltd, Cambridge, England, 239-279 (2000).

    Chapter  Google Scholar 

  65. G. Caprino, V. Lopresto, and D. Santoro, “Ballistic impact behavior of stitched graphite/epoxy laminates,” Compos. Sci. Technol., 67, 325-335 (2007).

    Article  Google Scholar 

  66. H. P. Hazell, A. Cowie, G. Kister, C. Stennet, and G. A. Cooper, “Penetration of a woven CFRP laminate by a high velocity steel sphere impacting at velocities of up to 1875 m/s,” Int. J. of Impact Engineering, 36, No. 9, 1136-1142 (2009).

    Article  Google Scholar 

  67. J. Lopez-Puente, R. Zaera, and C. Ugena Navarro, “Experimental and numerical analysis of normal and oblique ballistic impacts on thin Carbon/epoxy woven laminates,” Composites: Part A, Appl. Sci. Manufact., 39, No. 2, 374-387 (2008).

  68. G. Belingardi and R. Vadori, “Influence of laminate thickness in low velocity impact behavior of composite material plate,” Compos. Struct., 61, 27-38 (2003).

    Article  Google Scholar 

  69. W. Goldsmith, C. H. K. Dharan, and H. Chang, “Quasi-static and ballistic perforation of carbon fiber laminates,” Int. J. Solids Structure, 32, 89-103 (1995).

    Article  Google Scholar 

  70. S. Sanchez-Saez, E. Barbero, and C. Navarro, “Compressive residual strength at low temperatures of composite laminates subjected to low-velocity impacts,” Compos. Struct., 85, 226-32 (2008).

    Article  Google Scholar 

  71. A. Dixit, R. K. Misra, and H. S. Mali, “Compression modeling of plain weave textile fabric using finite elements,” Materialwissenschaft und Werkstofftechnik, 45, No. 7, 566-634 (2014).

    Article  Google Scholar 

  72. A. Dixit, R. K. Misra, and H. S. Mali, “Finite element compression modelling of 2x2 twill woven fabric textile composite,” Proc. Mater. Sci., 6, 1143-1149 (2014).

    Article  Google Scholar 

  73. A. Dixit, , H. S. Mali, and R. K. Misra. “Unit cell model of woven fabric textile composite for multiscale analysis,” Proc. Eng., 68, 352-358 (2013).

    Article  Google Scholar 

  74. Y. Z. Wan, Y. L. Wang, F. G. Zhou, G. X. Cheng, and K. Y. Han, “Three-dimensionally braided carbon fiber-epoxy composites, A new type of materials for osteosynthesis devices. II. Influence of fiber surface treatment,” J. Appl. Polym. Sci., 85, No. 5, 1040-1046 (2002).

    Article  Google Scholar 

  75. Y. Z. Wan , J. J. Lian , Y. Huang, Y. L. Wang, and G. C. Chen, “Two-step surface treatment of 3D braided carbon/Kevlar hybrid fabric and influence on mechanical performance of its composites,” Mater. Sci. Eng., A 429, 304-311 (2006).

    Article  Google Scholar 

  76. Shaktivesh, N. S. Nair, and N. K. Naik, “Ballistic impact behavior of 2D plain weave fabric targets with multiple layers: Analytical formulation,” Int. J. Damage Mech., 24, No. 1, 116-150 (2015).

    Article  Google Scholar 

  77. N. K. Naik and P. Shrirao, “Composite structures under ballistic impact,” Compos. Struct., 66, 579-590 (2004).

    Article  Google Scholar 

  78. Y. Tanabe, M. Aoki, K. Fujii, H. Kasano, and E. Yasuda, “Fracture behavior of CFRPs impacted by relatively highvelocity steel sphere,” Int. J. of Impact Eng., 28, 627-642 (2003).

    Article  Google Scholar 

  79. X. Jia, B. Sun, and B. Gu, “A numerical simulation on ballistic penetration damage of 3D orthogonal woven fabric at microstructure level,” Int. J. of Damage Mech., 21, March, 237-266 (2012).

  80. L. Sorrentino, C. Bellini, A. Corrado, W. Polini, and R. Aricò, “Ballistic performance evaluation of composite laminates in Kevlar 29,” Proc. Eng., 88, 255-262 (2015).

    Article  Google Scholar 

  81. A. Manes, L. M. Bresciani, and M. Giglio, “Ballistic performance of multi-layered fabric composite plates impacted by different 7.62-mm calibre projectiles,” Proc. Eng., 88, 208-215 (2014).

    Article  Google Scholar 

  82. Y. S. Lee, E. D. Wetzel, and N. J. Wagner, “The ballistic impact characteristics of Kevlar R woven fabrics impregnated with a colloidal shear thickening fluid,” J. Mater. Sci., 38, 2825-2833 (2003).

    Article  Google Scholar 

  83. C. K. Chu and Y. L. Chen, “Ballistic-proof effects of various woven constructions,” Fibres & Textiles in Eastern Europe, 18, No. 6 (83), 63-67 (2010).

  84. A. K. Bandaru, V. V. Chavan , S. Ahmad, R. Alagirusamy, and N. Bhatnagar, “Ballistic impact response of Kevlar reinforced thermoplastic composite armors,” Int. J. of Impact Eng., 89, 1-13, (2016).

    Article  Google Scholar 

  85. S. M. Walsh, B. R. Scott, and D. M. Spagnuolo, “The development of a hybrid thermoplastic ballistic material with application to helmets,” Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069, ARL-TR-3700 (2005)

  86. J. Pernas-Sanchez, D. A. Pedroche, D. Varas, J. Lopez-Puente, and R. Zaera, “Numerical modeling of ice behavior under high velocity impacts,” Int. J. of Solids and Structures, 49, 1919-1927 (2012).

    Article  Google Scholar 

  87. N. R. Mathivanan and J. Jerald, “Experimental investigation of low-velocity impact characteristics of woven glass fiber epoxy matrix composite laminates of EP3 grade,” Materials and Design, 31, Iss.9, October, 4553-4560 (2010).

  88. K. N. Shivakumar, W. Elber, and W. Illg, “Prediction of low velocity impact damage in thin circular laminates,” Am. Institute of Aeronautics and Astronautics J., 23, No. 3, 442-449 (1985).

    Article  Google Scholar 

  89. R. J. Muhi, F. Najim, and M. F. S. F. de Moura, “The effect of hybridization on the GFRP behavior under high velocity impact,” Composites: Part B, 40, 798-803, (2009).

    Article  Google Scholar 

  90. M. Ansar, W. Xinwei, and Z. Chouwei, “Modeling strategies of 3D woven composites: A review,” Compos. Struct., 93, 1947-1963 (2011).

    Article  Google Scholar 

  91. J. M. Duell, in: M. R Kessler (ed.), Advanced Topics in Characterization of Composites, Ch. 6, Trafford Publishing, Canada, 97-112 (2004).

    Google Scholar 

  92. C. Meola, and G. M. Carlomagno, “Impact damage in GFRP: New insights with infrared thermography,” Composites: Part A, 1839-1847 (2010).

  93. M. Bulut, A. Erkli, and E. Yeter, “Hybridization effects on quasi-static penetration resistance in fiber reinforced hybrid composite laminates,” Composites: Part B, 98, 9-22 (2016).

    Article  Google Scholar 

  94. B. A. Cheeseman and T. A. Bogetti, “Ballistic impact into fabric and compliant composite laminates,” Compos. Struct., 61, 161-173 (2003).

    Article  Google Scholar 

  95. J. Gustin, A. Joneson, M. Mahinfalah, and J. Stone, “Low velocity impact of combination Kevlar/carbon fiber sandwich composites,” Compos. Struct., 69, 396-406 (2005).

    Article  Google Scholar 

  96. E. Randjbaran, R. Zahari, N. A. A. Jalil, and D. L. A. A. Majid, “Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing,” Hindawi Publishing Corporation, The Scientific World Journal, 2014, Article ID 413753, 7 Pages (2014).

  97. M. Özen, “Influence of stacking sequence on the impact and postimpact bending behavior of hybrid sandwich composites,” Mech. Compos. Mater., 52, No. 6, 759-766 (2017).

    Article  Google Scholar 

  98. S. Behnia, V. Daghigh, K. Nikbin, A. Fereidoon, and J. Ghorbani, “Influence of stacking sequence and notch angle on the Charpy impact behavior of hybrid composites,” Mech. Compos. Mater., 52, No. 4, 489-496 (2016).

    Article  Google Scholar 

  99. M. M. Shokrieh and M. N. Fakhar, “Experimental, analytical, and numerical studies of composite sandwich panels under low-velocity impact loadings,” Mech. Compos. Mater., 47, No. 6, 643-658 (2012)

    Article  Google Scholar 

  100. A. K. Bandaru, L. Vetiyatil, and S. Ahmad, “The effect of hybridization on the ballistic impact behavior of hybrid composite armors,” Composites: Part B, 76, 300-319 (2015).

    Article  Google Scholar 

  101. S. C. Woo and T. W. Kim, “High strain-rate failure in carbon/Kevlar hybrid woven composites via a novel SHPB-AE coupled test,” Composites: Part B, 97, 317-328 (2016).

    Article  Google Scholar 

  102. D. M. White, E. A. Taylor, and R. A. Clegg, “Numerical simulation and experimental characterization of direct hypervelocity impact on a spacecraft hybrid carbon fibre/Kevlar composite structure,” Int. J. Impact Eng., 29, 779-790 (2003).

    Article  Google Scholar 

  103. M. V. Hosur, U. K. Vaidya, C. Ulven, and S. Jeelani, “Performance of stitched/unstitched woven carbon/epoxy composites under high velocity impact loading,” Compos. Struct., 64, 455-466 (2004).

    Article  Google Scholar 

  104. S. L. Valenca, S. Griza, V. G. Oliveira, E. M. Sussuchi, and F. G. C. Cunha, “Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric,” Composites: Part B, 70, 1-8 (2015).

    Article  Google Scholar 

  105. Y. Z. Wan, J. J. Lian, Y. Huang, F. He, Y. L. Wang, H. J. Jiang, and J. Y. Xin, “Preparation and characterization of three-dimensional braided carbon/Kevlar/epoxy hybrid composites,” J. Mater. Sci., 42, 1343-1350 (2007).

    Article  Google Scholar 

  106. D. T. Campbell and D. R. Cramer, Hybrid Thermoplastic Composite Ballistic Helmet Fabrication Study, Society for the Advancement of Material and Process Engineering, Fiberforge Corporation, Colorado (2008).

    Google Scholar 

  107. T. D. Jagannatha and G Harish, “Mechanical properties of carbon/glass fiber reinforced epoxy hybrid polymer composites,” Int. J. Mech. Eng. & Robotics Research, 4, No. 2, April, 131-137 (2015).

  108. P. J. Hazell and G. J. Appleby-Thomas, “A study on the energy dissipation of several different CFRP-based targets completely penetrated by a high velocity projectile,” Compos. Struct., 91, 103-109 (2009).

    Article  Google Scholar 

  109. K. S. Pandya, Ch. Veerraju, and N.K. Naik, “Hybrid composites made of carbon and glass woven fabrics under quasistatic loading,” Materials and Design, 32, 4094-4099 (2011).

    Article  Google Scholar 

  110. R. Park and J. Jang, “Impact behavior of aramid fiber/glass fiber hybrid composite: Evaluation of four-layer hybrid composites,” J. Mater. Sci., 36, 2359-2367 (2001).

    Article  Google Scholar 

  111. N. Shaaria, A. Jumahata, and M. K. M. Razifa, “Impact resistance properties of Kevlar/glass fiber hybrid composite laminates,” J. Technologi (Sci. & Eng.), 76, No. 3, 93-99 (2015).

    Google Scholar 

  112. G. Belingardi, M.P. Cavatorta, and C. Frasca, “Bending fatigue behavior of glass–carbon/epoxy hybrid composites,” Compos. Sci. Technol., 66, 222-232 (2006).

    Article  Google Scholar 

  113. D. Zhang, A. M. Waas, and C. F. Yen, “Progressive damage and failure response of hybrid 3D textile composites subjected to flexural loading. Part I: Experimental studies,” Int. J. of Solids and Structures, 75-76, 309-320 (2015).

  114. B. Yang, Z. Wang, L. Zhou, J. Zhang, and Wenyan Liang, “Experimental and numerical investigation of interply hybrid composites based on woven fabrics and PCBT resin subjected to low-velocity impact,” Compos. Struct., 132, 464-476 (2015).

    Article  Google Scholar 

  115. M. Bulut, A. Erkli, and Eyüp Yeter, “Hybridization effects on quasi-static penetration resistance in fiber reinforced hybrid composite laminates,” Composites: Part B, 98, 9-22, (2016).

    Article  Google Scholar 

  116. K. Naresh, K. Shankar, B.S. Rao, and R. Velmurugan, “Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites,” Composites: Part B, 100, 125-135 (2016).

    Article  Google Scholar 

  117. M. Sayer, N. B. Bektas, E. Demir, and Hasan Calliog˘lu, “The effect of temperatures on hybrid composite laminates under impact loading,” Composites: Part B, 43, 2152-2160 (2012).

  118. N. K. Naik, R. Ramasimha, H. Arya, S. V. Prabhu, and N. Shamarao, “Impact response and damage tolerance characteristics of glass-carbon/epoxy hybrid composite plates,” Composites: Part B, 32, 565-574 (2001).

    Article  Google Scholar 

  119. S. B. Sapozhnikov, O. A. Kudryavtsev, and M. V. Zhikharev, “Fragment ballistic performance of homogenous and hybrid thermoplastic composites,” Int. J. Impact Eng., 81, 8-16 (2015).

    Article  Google Scholar 

  120. F. Larsson, and L. Svensson, “Carbon, polyethylene and PBO hybrid fibre composites for structural lightweight armour,” Composites: Part A, 33, Iss. 2, February, 221-231 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Mali.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 53, No. 5, pp. 981-1008 , September-October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, P., Dixit, A. & Mali, H.S. High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures. A Review.. Mech Compos Mater 53, 685–704 (2017). https://doi.org/10.1007/s11029-017-9696-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-017-9696-2

Keywords

Navigation