Skip to main content
Log in

Advances in Creep Behaviors of Textile Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Textile composites have been widely used in various fields because of their excellent mechanical properties. Textile composites have viscoelastic properties, which mainly include matrix and reinforcement materials. The viscoelastic properties of textile composites containing polymers can be measured and evaluated by measuring and analyzing viscoelastic behaviors such as creep and stress relaxation. However, creep is a typical viscoelastic phenomenon, which means that the material will deform after long-term use. Composite materials with poor creep resistance can easily lead to functional failure, which may lead to some catastrophic events. Therefore, studying the creep properties of industrial textile composites is imperative. This paper reviews the creep-fatigue resistance of textile and textile composites under specific stresses. The creep behaviors of textile composites and the mechanism of creep damage are summarized. The current test and analysis methods for measuring the creep properties of composite materials are outlined. Several factors influence creep behaviors during use, including the type of fibre, the type of polymer matrix, the fabric's structure, interfacial bonding between fibers and polymer matrixes, and external factors like load level and environment. Finally, the current problems and application scenarios of textile composites with creep resistance are presented to provide a basis for the development of creep-resistant textile composites with superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Papanicolaou, G.C., Xepapadaki, A.G., Karagounaki, K.: Time and temperature effect on the linear–nonlinear viscoelastic transition threshold of a polymeric system. J. Appl. Polym. Sci. 108(1), 640–649 (2008)

    Article  CAS  Google Scholar 

  2. Guedes, R.M.: Creep and fatigue lifetime prediction of polymer matrix composites based on simple cumulative damage laws. Compos. A Appl. Sci. Manuf. 39(11), 716–1725 (2008)

    Article  Google Scholar 

  3. Bondar, V.S., Abashev, D.R.: Mathematical Modeling of the Monotonic and Cyclic Loading Processes. Strength Mater. 52(3), 366–373 (2020)

    Article  Google Scholar 

  4. Yousefi, S.R., Alshamsi, H.A., Amiri, O., et al.: Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  5. Brockenbrough, J.R., Suresh, S., Wienecke, H.A.: Deformation of metal-matrix composites with continuous fibres: geometrical effects of fibre distribution and shape. Acta Metall. Mater. 39(5), 735–752 (1991)

    Article  CAS  Google Scholar 

  6. Akcasu, A.Z., Klein, R., Wang, C.H.: Microscopic Theory of Viscoelasticity in Binary Polymer Mixtures. Macromolecules 27(10), 2736–2743 (1994)

    Article  CAS  Google Scholar 

  7. Madgwick, A., Mori, T., Withers, P.J., et al.: Steady-state creep of a composite. Mech. Mater. 33(9), 493–498 (2001)

    Article  Google Scholar 

  8. Guimarães, M.G.A., Mattos, V.D., Carvalho, U.D., et al.: Degradation of polypropylene woven geotextile: tensile creep and weathering. Geosynth. Int. 24(2), 213–223 (2016)

    Article  Google Scholar 

  9. Oh, J.S., Kim, D.Y., Kim, H.Y., et al.: Wrinkle prediction of seat cover considering cyclic loading-unloading with viscoelastic characteristics. Mater. Des. 109, 270–281 (2016)

    Article  Google Scholar 

  10. Kim, W.G., Lee, Y.H., Hong, U.H.: Evaluation of tension and creep rupture behaviors of long-term exposed P91 steel in a supercritical plant. Eng. Fail. Anal. (2020). https://doi.org/10.1016/j.engfailanal.2020.104736

    Article  Google Scholar 

  11. Wang, X., Ma, Z., Chen, H., et al.: Creep rupture limit analysis for engineering structures under high-temperature conditions. Int. J. Press. Vessels. Pip. (2022). https://doi.org/10.1016/j.ijpvp.2022.104763

    Article  Google Scholar 

  12. Obaid, N., Kortschot, M., Sain, M.: Modeling and Predicting the Stress Relaxation of Composites with Short and Randomly Oriented Fibres. Materials 10(10), 1207 (2017)

    Article  Google Scholar 

  13. Monticeli, F.M., Daou, D., Dinulović, M., et al.: Mechanical behavior simulation: NCF/epoxy composite processed by RTM. Polym. Polym. Compos. 27(2), 66–75 (2019)

    Article  CAS  Google Scholar 

  14. Xie, Y., Xiao, Y., Lv, J., et al.: Influence of creep on preload relaxation of bolted composite joints: Modeling and numerical simulation. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.112332

  15. Yang, J., Zhang, Z., Schlarb, A.K., et al.: On the characterization of tensile creeps resistance of polyamide 66 nanocomposites. Part I. Experimental results and general discussions. Polymer. 47(8), 2791–2801 (2006)

  16. Doi, M., Takimoto, J., McLeish, T.C.B., et al.: Molecular modelling of entanglement. Philosophical transactions of the Royal Society of London. Ser A Math Phys Eng Sci. 361(1805), 641–652 (2003)

  17. Hsissou, R., Seghiri, R., Benzekri, Z., et al.: Polymer composite materials: A comprehensive review. Compos. Struct. (2021). https://doi.org/10.1016/j.compstruct.2021.113640

    Article  Google Scholar 

  18. Pettinà, M., Biglari, F., Heaton, A., et al.: Modelling damage and creep crack growth in structural ceramics at ultra-high temperatures. J. Eur. Ceram. Soc. 34(11), 2799–2805 (2014)

    Article  Google Scholar 

  19. Qiu, H.H., Cai, Y.Y.: Creep performance analysis of two-dimensional braided aramid cored ropes. Technical Textiles 33(06), 25–28 (2015)

    Google Scholar 

  20. Su, F., Huang, P., Wu, J., et al.: Creep behavior of C/SiC composite in hot oxidizing atmosphere and its mechanism. Ceram. Int. 43(12), 9355–9362 (2017)

    Article  CAS  Google Scholar 

  21. Zhang, Y.Y., Xu, S.S., Zhan, Q.L., et al.: Experimental and Theoretical Research on the Stress-Relaxation Behaviors of PTFE Coated Fabrics under Different Temperatures. Adv. Mater. Sci. Eng. 2015(7), 1–12 (2015)

    Google Scholar 

  22. Lamon, J.: Review: creep of fibre-reinforced ceramic matrix composites. Int. Mater. Rev. 65(1), 28–62 (2020)

    Article  CAS  Google Scholar 

  23. Bunsell, A.R., Piant, A.: A review of the development of three generations of small diameter silicon carbide fibres. J. Mater. Sci. 41(3), 823–839 (2006)

    Article  CAS  Google Scholar 

  24. Savino, R., Criscuolo, L., Di Martino, G.D., et al.: Aero-thermo-chemical characterization of ultra-high-temperature ceramics for aerospace applications. J. Eur. Ceram. Soc. 38(8), 2937–2953 (2018)

    Article  CAS  Google Scholar 

  25. Boukharov, G.N., Chanda, M.W., Boukharov, N.G.: The three processes of brittle crystalline rock creep. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32(4), 325–335 (1995)

    Article  Google Scholar 

  26. Gasc-Barbier, M., Chanchole, S., Bérest, P.: Creep behavior of Bure clayey rock. Appl. Clay Sci. 26(1), 449–458 (2004)

    Article  CAS  Google Scholar 

  27. Verstrynge, E., Schueremans, L., Van Gemert, D., et al.: Modelling and analysis of time-dependent behaviour of historical masonry under high stress levels. Eng. Struct. 33(1), 210–217 (2011)

    Article  Google Scholar 

  28. Jostad, H.P., Yannie, J.: A procedure for determining long-term creep rates of soft clays by triaxial testing. Eur. J. Environ. Civ. Eng. 26(7), 2600–2615 (2022)

    Article  Google Scholar 

  29. Okubo, S., Nishimatsu, Y., Fukui, K.: Complete creep curves under uniaxial compression. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28(1), 77–82 (1991)

    Article  Google Scholar 

  30. Falaleev, G.N.: Rock creep degree assessment. J. Min. Sci. 46(1), 34–37 (2010)

    Article  Google Scholar 

  31. He, Z., Zhu, Z., Ni, X., et al.: Shear creep tests and creep constitutive model of marble with structural plane. Eur. J. Environ. Civ. Eng. 23(11), 1275–1293 (2019)

    Article  CAS  Google Scholar 

  32. Renaud, F., Dion, J., Chevallier, G., et al.: A new identification method of viscoelastic behavior: Application to the generalized Maxwell model. Mech. Syst. Signal Process. 25(3), 991–1010 (2011)

    Article  Google Scholar 

  33. Babaei, B., Davarian, A., Pryse, K.M., et al.: Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra. J. Mech. Behav. Biomed. Mater. 55, 32–41 (2016)

    Article  Google Scholar 

  34. Gu, J., Xie, Z., Wang, S., et al.: Thermo-mechanical modeling of woven fabric reinforced shape memory polymer composites. Mech. Adv. Mater. Struct. 26(12), 1042–1052 (2019)

    Article  CAS  Google Scholar 

  35. Nguyen-Sy, T., Nguyen, T.: On the effective properties of composites made of viscoelastic constituents. Mech. Adv. Mater. Struct. 28(13), 1328–1336 (2021)

    Article  CAS  Google Scholar 

  36. Zhao, L.Y., Zhu, Q.Z., Xu, W.Y., et al.: A unified micromechanics-based damage model for instantaneous and time-dependent behaviors of brittle rocks. Int. J. Rock Mech. Min. Sci. 84, 187–196 (2016)

    Article  Google Scholar 

  37. Katicha, S.W., Flintsch, G.W.: Fractional viscoelastic models: master curve construction, interconversion, and numerical approximation. Rheol. Acta 51(8), 675–689 (2012)

    Article  CAS  Google Scholar 

  38. Khoroshun, L.P., Nazarenko, L.V.: A Model of the Short-Term Damageability of a Transversally Isotropic Material. Int. Appl. Mech. 37(1), 66–74 (2001)

    Article  Google Scholar 

  39. Mortazavi, A., Molladavoodi, H.: A numerical investigation of brittle rock damage model in deep underground openings. Eng. Fract. Mech. 90, 101–120 (2012)

    Article  Google Scholar 

  40. Pijaudier-Cabot, G., La Borderie, C.: Mechanical damage, chemical damage and permeability in quasi-brittle cementitious materials. Eur. J. Environ. Civ. Eng. 13(7–8), 963–982 (2009)

    Article  Google Scholar 

  41. Sisodiya, M., Zhang, Y.: A directional microcrack damage theory for brittle solids based on continuous hyperplasticity. Int. J. Damage Mech 31(9), 1320–1348 (2022)

    Article  Google Scholar 

  42. Lin, C., Chen, Y., Lin, C., et al.: Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate. Polymers (2022). https://doi.org/10.3390/polym14102124

    Article  Google Scholar 

  43. Engelbrecht-Wiggans, A., Phoenix, S.L.: A stochastic model based on fibre breakage and matrix creep for the stress-rupture failure of unidirectional continuous fibre composites. Int. J. Fract. 217(1–2), 1–34 (2019)

    Article  CAS  Google Scholar 

  44. Wang, G., Sun, F., Xiong, X., et al.: A 3D Creep Model considering Disturbance Damage and Creep Damage and Its Application in Tunnel Engineering. Math. Probl. Eng. (2020). https://doi.org/10.1155/2020/7073089

    Article  Google Scholar 

  45. Pailler, F., Lamon, J.: Micromechanics based model of fatigue/oxidation for ceramic matrix composites. Compos. Sci. Technol. 65(3), 369–374 (2005)

    Article  CAS  Google Scholar 

  46. Nakada, M., Miyano, Y., Kinoshita, M., et al.: Time-Temperature Dependence of Tensile Strength of Unidirectional CFRP. J. Compos. Mater. 36(22), 2567–2581 (2002)

    Article  CAS  Google Scholar 

  47. Wang, J., Chen, L., Shen, W., et al.: Research on Tensile Properties of Carbon Fibre Composite Laminates. Polymers (2022). https://doi.org/10.3390/polym14122318

    Article  Google Scholar 

  48. Slattery, K.T.: Probabilistic micromechanical model of creep-rupture in filamentary composites. Compos. Part. B. Eng. 27(3), 381–386 (1996)

  49. Wang, X., Song, Z., Cheng, Z., et al.: Tensile creep behaviours and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fibre. J. Eur. Ceram. Soc. 40(14), 4872–4878 (2020)

    Article  CAS  Google Scholar 

  50. Carrère, P., Lamon, J.: Creep behaviour of a SiC/Si-B-C composite with a self-healing multilayered matrix. J. Eur. Ceram. Soc. 23(7), 1105–1114 (2003)

    Article  Google Scholar 

  51. Morscher, G.N.: Tensile creep and rupture of 2D-woven SiC/SiC composites for high temperature applications. J. Eur. Ceram. Soc. 30(11), 2209–2221 (2010)

    Article  CAS  Google Scholar 

  52. Almansour, A.S., Morscher, G.N.: Tensile creep behavior of SiCf/SiC ceramic matrix minicomposites. J. Eur. Ceram. Soc. 40(15), 5132–5146 (2020)

    Article  CAS  Google Scholar 

  53. Stolyarov, O., Mostovykh, P.: Creep and stress relaxation behavior of woven polyester fabrics: experiment and modeling. Mech. Time. Depend. Mater. (2022). https://doi.org/10.1007/s11043-022-09537-0

  54. Jia, Y., Fiedler, B.: Tensile creep behaviour of unidirectional flax fibre reinforced bio-based epoxy composites. Composites Communications 18, 5–12 (2020)

    Article  Google Scholar 

  55. Zhang, F., Fan, Z., Du, X., et al.: Study on Viscoelastic Propertiesof Cord-Rubber Composite Subjected to Biaxial Loading. J. Elastomers Plast. 36(2), 143–158 (2004)

    Article  CAS  Google Scholar 

  56. Yang, B., Shang, Y., Yu, Z., et al.: Comprehensive study on mechanical properties of coated biaxial warp-knitted fabrics. J. Reinf. Plast. Compos. 41(1–2), 3–19 (2021)

    Google Scholar 

  57. Zerdzicki, K., Klosowski, P., Woznica, K.: Influence of service ageing on polyester-reinforced polyvinyl chloride-coated fabrics reported through mathematical material models. Text. Res. J. 89(8), 1472–1487 (2018)

    Article  Google Scholar 

  58. Ma, X., Yoshida, F.: Rate-dependent indentation hardness of a power-law creep solder alloy. Appl. Phys. Lett. 82(2), 188–190 (2003)

    Article  CAS  Google Scholar 

  59. Mahmudi, R., Roumina, R., Raeisinia, B.: Investigation of stress exponent in the power-law creep of Pb–Sb alloys. Mater. Sci. Eng., A 382(1), 15–22 (2004)

    Article  Google Scholar 

  60. Uzun, O., Başman, N., Alkan, C., et al.: Investigation of mechanical and creep behaviours of polypyrrole by depth-sensing indentation. Polym. Bull. 66(5), 649–660 (2011)

    Article  CAS  Google Scholar 

  61. Ranaivomanana, N., Multon, S., Turatsinze, A.: Basic creep of concrete under compression, tension and bending. Constr. Build. Mater. 38, 173–180 (2013)

    Article  Google Scholar 

  62. Yi, N., Gu, Y.Z., Li, M., et al.: Morphology and size characterization of interface structure of carbon fibre composites. Acta Materiae Compositae Sinica 5(27), 36–40 (2010)

    Google Scholar 

  63. Muhammad, M., Masoomi, M., Torries, B., et al.: Depth-sensing time-dependent response of additively manufactured Ti-6Al-4V alloy. Addit. Manuf. 24, 37–46 (2018)

    CAS  Google Scholar 

  64. Fu, K., Sheppard, L.R., Chang, L., et al.: Length-scale-dependent nanoindentation creep behaviour of Ti/Al multilayers by magnetron sputtering. Mater. Charact. 139, 165–175 (2018)

    Article  CAS  Google Scholar 

  65. Li, Y.F., Pan, J.C., Lang, F.C., et al.: Microcreep behaviours of carbon fibre reinforced resin composites. Acta Materiae Compositae Sinica 37(8), 1861–1867 (2020)

    Google Scholar 

  66. Pascual-Francisco, J.B., Farfan-Cabrera, L.I., Susarrey-Huerta, O.: Characterization of tension set behavior of a silicone rubber at different loads and temperatures via digital image correlation. Polym Test. (2020). https://doi.org/10.1016/j.polymertesting.2019.106226

  67. Li, J., Dan, X., Xu, W., et al.: 3D digital image correlation using single color camera pseudo-stereo system. Opt. Laser Technol. 95, 1–7 (2017)

    Article  Google Scholar 

  68. Farfán-Cabrera, L.I., Pascual-Francisco, J.B., Barragán-Pérez, O., et al.: Determination of creep compliance, recovery and Poisson’s ratio of elastomers by means of digital image correlation (DIC). Polym. Testing 59, 245–252 (2017)

    Article  Google Scholar 

  69. Pan, B., Qian, K., Xie, H., et al.: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. (2009). https://doi.org/10.1088/0957-0233/20/6/062001

    Article  Google Scholar 

  70. Farfan-Cabrera, L.I., Pascual-Francisco, J.B.: An Experimental Methodological Approach for Obtaining Viscoelastic Poisson’s Ratio of Elastomers from Creep Strain DIC-Based Measurements. Exp. Mech. 62(2), 287–297 (2022)

    Article  CAS  Google Scholar 

  71. Baccouch, Z., Hamdi, A., Nouri, H., et al.: Creep behavior of flax fibre-reinforced polyamide 6 composites: experimental and numerical studies. Polym. Bull. 79(11), 9941–9956 (2022)

    Article  CAS  Google Scholar 

  72. Brinkmeyer, A., Pellegrino, S., Weaver. P.M.: Effects of Long-Term Stowage on the Deployment of Bistable Tape Springs. J. Appl. Mech. (2015). https://doi.org/10.1115/1.4031618

  73. Bueno, B.S., Costanzi, M.A., Zornberg, J.G.: Conventional and accelerated creep tests on non-woven needle-punched geotextiles. Geosynth. Int. 12(6), 276–287 (2005)

    Article  Google Scholar 

  74. Hadid, M., Guerira, B., Bahri, M., et al.: The creep master curve construction for the polyamide 6 by the stepped isostress method. Mater. Res. Innovations 18(sup6), S6–S336 (2014)

    Article  Google Scholar 

  75. Hao, A., Chen, Y., Chen, J.Y.: Creep and recovery behavior of kenaf/polypropylene non-woven composites. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40726

    Article  Google Scholar 

  76. Ornaghi, H.L., Almeida, J.H.S., Monticeli, F.M., et al.: Stress relaxation, creep, and recovery of carbon fibre non-crimp fabric composites. Composites Part C: Open Access (2020). https://doi.org/10.1016/j.jcomc.2020.100051

    Article  Google Scholar 

  77. Priyanka, P., Mali, H.S., Dixit, A.: Dynamic mechanical behaviour of kevlar and carbon-kevlar hybrid fibre reinforced polymer composites. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(19), 4181–4193 (2020)

    Article  Google Scholar 

  78. Shakil, A., Kim, S., Polycarpou, A.A.: Creep Behavior of Graphene Oxide, Silk Fibroin, and Cellulose Nanocrystal Bionanofilms. Adv Mater Inter. 9(18), 2101640-n/a (2022)

  79. Alderliesten, R.C.: How proper similitude can improve our understanding of crack closure and plasticity in fatigue. Int. J. Fatigue 82, 263–273 (2016)

    Article  Google Scholar 

  80. Rong, X.O., Kai, T.Y., Li, C.S., et al.: Research progress on creep behaviours and prediction methods of wood-plastic composites. Acta Materiae Compositae Sinica 06(38), 1734–1753 (2021)

    Google Scholar 

  81. Baxevanis, T., Plexousakis, M.: On the effect of fibre creep-compliance in the high-temperature deformation of continuous fibre-reinforced ceramic matrix composites. Int. J. Solids Struct. 47(18), 2487–2497 (2010)

    Article  Google Scholar 

  82. Jing, Z., Ju, W.C., Wan, L.P., et al.: The relationship between fibre molecular structure and creep behaviours. Polym. Mater. Sci. Eng. 02, 114–117 (2004)

    Google Scholar 

  83. Berger, L., Kausch, H.H., Plummer, C.J.G.: Structure and deformation mechanisms in UHMWPE-fibres. Polymer 44(19), 5877–5884 (2003)

    Article  CAS  Google Scholar 

  84. Dongliang, D.: Study of irradiation cross-linking modification and creep resistance of UHMWPE fibres. Donghua University. P:134 (2017)

  85. Kreze, T., Malej, S.: Structural Characteristics of New and Conventional Regenerated Cellulosic Fibres. Text. Res. J. 73(8), 675–684 (2003)

    Article  CAS  Google Scholar 

  86. Yuan, W.X., Lu, M., Yi, Z.Z., et al.: Research on the molecular structure and thermal stability of viscose fibres. Journal of Textile Science and Engineering 39(02), 64–70 (2022)

    Google Scholar 

  87. Yang, X.H., Wu, C.X.: Computer simulation of the conformation of alkane molecules. Journal of Donghua University 5, 20–24 (2004)

    Google Scholar 

  88. Cai, Y.: Structure and properties of dyed polyester fibres. Xian. Eng. Univ. P:76 (2016)

  89. Chen, K., Yu, J., Liu, Y., et al.: Creep deformation and its correspondence to the microstructure of different polyester industrial yarns at room temperature. Polym. Int. 68(3), 555–563 (2019)

    Article  CAS  Google Scholar 

  90. Shah, D.U.: Developing plant fibre composites for structural applications by optimizing composite parameters: a critical review. J. Mater. Sci. 48(18), 6083–6107 (2013)

    Article  CAS  Google Scholar 

  91. Summerscales, J., Dissanayke, N.P.J., Virk, A.S., et al.: A review of bast fibres and their composites. Part1-Fibres as reinforcements. Compos. Part. A. Appl. Sci. Manufact. 41(10), 329–1335 (2010)

  92. Summerscales, J., Virk, A., Hall, W.: A review of bast fibres and their composites: Part 4 ~ organisms and enzyme processes. Compos. A Appl. Sci. Manuf. 140, 106149 (2021)

    Article  CAS  Google Scholar 

  93. Jabbar, A., Madhukar, K.B., Rwawiire, S., et al.: Modeling and analysis of the creep behavior of jute/green epoxy composites incorporated with chemically treated pulverized nano/micro jute fibers. Ind. Crops Prod. 84, 230–240 (2016)

    Article  CAS  Google Scholar 

  94. Li, Y., Li, J., Lei, F.X., et al.: Analysis of creep and stress relaxation behavior of cotton fibre. Cotton Textile Technology 49(4), 27–32 (2021)

    Google Scholar 

  95. Sun, P., Yong, L., Chen, X.C., et al.: Research on creep modeling and simulation of cotton fibre assembly based on the three-dimensional discrete element. Text. Res. J. 92(23–24), 4884–4898 (2022)

    Article  CAS  Google Scholar 

  96. Das, S., Ghosh, A.: Study of creep, stress relaxation, and inverse relaxation in mulberry (Bombyx mori) and tasar (Antheraea mylitta) silk. J. Appl. Polym. Sci. 99(6), 3077–3084 (2006)

    Article  CAS  Google Scholar 

  97. Cisse, O., Placet, V., Boubakar, M.L., et al.: Creep behaviour of single hemp fibres. Part I: viscoelastic properties and their scattering under constant climate. J. Mater. Sci. 50(4), 1996–2006 (2015)

  98. Asyraf, M.R., Syamsir, A., Zahari, N.M., et al.: Effect of Stacking Sequence on Long-Term Creep Performance of Pultruded GFRP Composites. Polymers (2022). https://doi.org/10.3390/polym14194064

    Article  Google Scholar 

  99. Li, C., Jaramillo, E., Strachan, A.: Molecular dynamics simulations on cyclic deformation of an epoxy thermoset. Polymer 54(2), 881–890 (2013)

    Article  CAS  Google Scholar 

  100. Yashiro, K., Naito, M., Ueno, S., et al.: Molecular dynamics simulation of polyethylene under cyclic loading: Effect of loading condition and chain length. Int. J. Mech. Sci. 52(2), 136–145 (2010)

    Article  Google Scholar 

  101. Jarrah, M., Najafabadi, E.P., Khaneghahi, M.H., et al.: The effect of elevated temperatures on the tensile performance of GFRP and CFRP sheets. Constr. Build. Mater. 190, 38–52 (2018)

    Article  CAS  Google Scholar 

  102. Kazanci, M.: Carbon fibre reinforced microcomposites in two different epoxies. Polym. Testing 23(7), 747–753 (2004)

    Article  CAS  Google Scholar 

  103. Aya, M., Akimoto, Y.O.: A surface-grafted hydrogel demonstrating thermoresponsive adhesive strength change. Soft Matter 19, 3249–3252 (2023)

    Article  Google Scholar 

  104. Marco-Dufort, B., Iten, R., Tibbitt, M.W.: Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks. J. Am. Chem. Soc. 142(36), 15371–15385 (2020)

    Article  CAS  Google Scholar 

  105. He, C., Christensen, P.R., Seguin, T.J., et al.: Conformational Entropy as a Means to Control the Behavior of Poly(diketoenamine) Vitrimers In and Out of Equilibrium. Angew. Chem. Int. Ed. 59(2), 735–739 (2020)

    Article  CAS  Google Scholar 

  106. Lessard, J.J., et al.: Block Copolymer Vitrimers. J. Am. Chem. Soc. 142(1), 283–289 (2020)

    Article  CAS  Google Scholar 

  107. Chen, Y., Scheutz, G.M., Sung, S.H., et al.: Covalently Cross-Linked Elastomers with Self-Healing and Malleable Abilities Enabled by Boronic Ester Bonds. ACS Appl. Mater. Interfaces. 10(28), 24224–24231 (2018)

    Article  CAS  Google Scholar 

  108. Li, X., Wu, S.W., Yu, S.J., et al.: A facile one-pot route to elastomeric vitrimers with tunable mechanical performance and superior creep resistance. Polymer 238, 124379 (2022)

    Article  CAS  Google Scholar 

  109. Li, Q.Z., You, P.W., Yi, Q.W., et al.: Nanoreinforcing and nanocomposite technology for rubber. China Synthetic Rubber Industry 02, 71–77 (2000)

    Google Scholar 

  110. Khatua, B.B., Lee, D.J., Kim, H.Y., et al.: Effect of Organoclay Platelets on Morphology of Nylon-6 and Poly(ethylene-ran-propylene) Rubber Blends. Macromolecules 37(7), 2454–2459 (2004)

    Article  CAS  Google Scholar 

  111. Pramanick, A., Sain, M.: Temperature-Stress Equivalency in Nonlinear Viscoelastic Creep Characterization of Thermoplastic/Agro-fibre Composites. J. Thermoplast. Compos. Mater. 19(1), 35–60 (2006)

    Article  CAS  Google Scholar 

  112. Cataldi, A., Deflorian, F., Pegoretti, A.: Poly 2-ethyl-2-oxazoline/microcrystalline cellulose composites for cultural heritage conservation: Mechanical characterization in dry and wet state and application as lining adhesives of canvas. Int. J. Adhes. Adhes. 62, 92–100 (2015)

    Article  CAS  Google Scholar 

  113. Schaefer, D.W., Justice, R.S.: How Nano Are Nanocomposites. Macromolecules 40(24), 8501–8517 (2007)

    Article  CAS  Google Scholar 

  114. Barrau, S., Demont, P., Peigney, A., et al.: DC and AC Conductivity of Carbon Nanotubes−Polyepoxy Composites. Macromolecules 36(14), 5187–5194 (2003)

    Article  CAS  Google Scholar 

  115. Al Mahmud, H.E.A.: Multiscale modeling of carbon fibre- graphene nanoplatelet-epoxy hybrid composites using a reactive force field. Compsites Part B: Engineering 172, 628–635 (2019)

    Article  CAS  Google Scholar 

  116. Liu, J., Lu, Y., Tian, M., et al.: The Interesting Influence of Nanosprings on the Viscoelasticity of Elastomeric Polymer Materials: Simulation and Experiment. Adv. Func. Mater. 23(9), 1156–1163 (2013)

    Article  CAS  Google Scholar 

  117. Jia, Q., Fei, L., Jing, C., et al.: A Review on Creep of Thermoplastic Polymer Composites. Polym. Bull. 03, 1–10 (2017)

    Google Scholar 

  118. Ganss, M., Satapathy, B.K., Thunga, M., et al.: Temperature dependence of creep behavior of PP-MWNT nanocomposites. Macromole. Rapid. Commun. 16(28), 1624–1633 (2007)

    Article  Google Scholar 

  119. Nomula, S.R., Rathore, D.K., Ray, B.C., et al.: Nomula S S R, Rathore D K, Ray B C, et al. Creep performance of CNT reinforced glass fibre/epoxy composites: Roles of temperature and stress. J. Appl. Polym. Sci. 25(136), 47674 (2019)

  120. Sundararaghavan, V., Kumar, A.: Molecular dynamics simulations of compressive yielding in cross-linked epoxies in the context of Argon theory. Int. J. Plast 47, 111–125 (2013)

    Article  CAS  Google Scholar 

  121. Park, H., Kim, B., Choi, J., et al.: Influences of the molecular structures of curing agents on the inelastic-deformation mechanisms in highly-crosslinked epoxy polymers. Polymer 136, 128–142 (2018)

    Article  CAS  Google Scholar 

  122. Park, H., Chung, I., Cho, M.: Effect of molecular structure of curing agents on cyclic creep in highly cross-linked epoxy polymers. J. Polym. Sci. 58(12), 1617–1631 (2020)

    Article  CAS  Google Scholar 

  123. Khatkar, V., Behera, B.K.: Experimental investigation of textile structure reinforced composite leaf spring for their cyclic flexural and creep behaviour. Compos. Struct. (2021). https://doi.org/10.1016/j.compstruct.2020.113439

    Article  Google Scholar 

  124. Zadekhast, R., Asayesh, A.: Analysis of the tensile creep performance of warp-knitted fabrics in technical applications in view of fabric structure. J. Text. Ins. 1–7 (2022)

  125. Li, J., Weng, G.J.: Effect of a viscoelastic interphase on the creep and stress/strain behavior of fibre-reinforced polymer matrix composites. Compos. B Eng. 27(6), 589–598 (1996)

    Article  Google Scholar 

  126. Guo, S., Shen, W., Li, R., et al.: Characterization of tensile creep behavior of fabric-reinforced PVC flexible composites. The Journal of The Textile Institute 113(8), 1699–1706 (2022)

    Article  CAS  Google Scholar 

  127. Tao, P.: Testing and analysis of creep behaviours of non-woven geotextiles. Journal of Textile Research 22(04), 63–64 (2001)

    Google Scholar 

  128. Prüß, H., Vietor, T.: Design for Fibre-Reinforced Additive Manufacturing. J. Mech. Des. 137(11), (2015)

  129. Acha, B.A., Reboredo, M.M., Marcovich, N.E.: Creep and dynamic mechanical behavior of PP–jute composites: Effect of the interfacial adhesion. Compos. A Appl. Sci. Manuf. 38(6), 1507–1516 (2007)

    Article  Google Scholar 

  130. Tam, L., Wu, R., Minkeng, M.A.N., et al.: Understanding creep behavior of carbon fibre/epoxy interface via molecular dynamics simulation. Mech. Adv. Mater. Struct. 1–13 (2022)

  131. Xuan, L., Yi, H.C., Yun, Y., et al.: Multiphase interfacial structure and toughening mechanism of nano-SiO2@jute fibre/PP composites. Acta Materiae Compositae Sinica 39(03), 1026–1035 (2022)

    Google Scholar 

  132. Zhang, X., Zhang, Y., Wu, Y., et al.: Viscoelastic Equivalent Creep Behavior and Its Influencing Factors of Basalt Fibre-Reinforced Asphalt Mixture under Indirect Tensile Condition. Adv. Mater. Sci. Eng. (2021). https://doi.org/10.1155/2021/6682606

  133. Esonye, C., Ogah, A.O., Ikezue, E.N., et al.: Multi-objectives Statistical Optimization and micro-mechanics Mathematical Modelling of Musa Acuminate fibre-vinyl Ester Composite Reinforcement. Fibres. Polym. 23(11), 3163–3178 (2022)

    Article  CAS  Google Scholar 

  134. Ruggles-Wrenn, M.B., Sharma, V.: Effects of Steam Environment on Fatigue Behavior of Two SiC/[SiC+Si3N4] Ceramic Composites at 1300 °C. Appl. Compos. Mater. 18(5), 385–396 (2011)

    Article  CAS  Google Scholar 

  135. Xing, W.W., Ming, L., Xiao, Y.Z., et al.: Effect of humidity on the viscoelastic properties of glass bead reinforced rigid polyurethane composite foam. Acta Materiae Compositae Sinica 01(30), 218–222 (2013)

    Google Scholar 

  136. Van den Oever, M., Molenveld, K.: Creep deflection of Wood Polymer Composite profiles at demanding conditions. Case Studies in Construction Materials (2019). https://doi.org/10.1016/j.cscm.2019.e00224

    Article  Google Scholar 

  137. Yang, J., Zhang, Z., Schlarb, A.K., et al.: On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part I. Experimental results and general discussions. Polymer. 47(8), 2791–2801 (2006)

  138. Chang, F., Lam, F., Kadla, J.F.: Using master curves based on time–temperature superposition principle to predict creep strains of wood–plastic composites. Wood Sci. Technol. 47(3), 571–584 (2013)

    Article  CAS  Google Scholar 

  139. Wang, X., Shi, J., Liu, J., et al.: Creep behavior of basalt fibre reinforced polymer tendons for prestressing application. Mater. Des. 59, 558–564 (2014)

    Article  CAS  Google Scholar 

  140. Xia, H., Ji, H.W., Ai, Q.N., et al.: Effect of stress level and fibre angle on the creep behaviour of CGF/PP composites and numerical prediction of their Burgers model parameters. Acta Materiae Compositae Sinica 05(36), 1216–1225 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Science Funds of China (11972172), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haitao Lin or Pibo Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Zhao, Z., Lin, H. et al. Advances in Creep Behaviors of Textile Composites. Appl Compos Mater 30, 1949–1978 (2023). https://doi.org/10.1007/s10443-023-10154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10154-4

Keywords

Navigation