Skip to main content
Log in

Acute and long-term effects of intracerebroventricular administration of α-ketoisocaproic acid on oxidative stress parameters and cognitive and noncognitive behaviors

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Maple Syrup Urine Disease (MSUD) is biochemically characterized by elevated levels of leucine, isoleucine and valine, as well as their corresponding transaminated branched-chain α-keto acids in tissue and biological fluids. Neurological symptoms and cerebral abnormalities, whose mechanisms are still unknown, are typical of this metabolic disorder. In the present study, we evaluated the early effects (1 h after injection) and long-term effects (15 days after injection) of a single intracerebroventricular administration of α-ketoisocaproic acid (KIC) on oxidative stress parameters and cognitive and noncognitive behaviors. Our results showed that KIC induced early and long-term effects; we found an increase in TBARS levels, protein carbonyl content and DNA damage in the hippocampus, striatum and cerebral cortex both one hour and 15 days after KIC administration. Moreover, SOD activity increased in the hippocampus and striatum one hour after injection, whereas after 15 days, SOD activity decreased only in the striatum. On the other hand, KIC significantly decreased CAT activity in the striatum one hour after injection, but 15 days after KIC administration, we found a decrease in CAT activity in the hippocampus and striatum. Finally, we showed that long-term cognitive deficits follow the oxidative damage; KIC induced impaired habituation memory and long-term memory impairment. From the biochemical and behavioral findings, it we presume that KIC provokes oxidative damage, and the persistence of brain oxidative stress is associated with long-term memory impairment and prepulse inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Alzoubi KH, Khabour OF, Alhaidar IA, Aleisa AM, Alkadhi KA (2013) Diabetes impairs synaptic plasticity in the superior cervical ganglion: possible role for BDNF and oxidative stress. J Mol Neurosci 51:763–770. doi:10.1007/s12031-013-0061-1

    Article  CAS  PubMed  Google Scholar 

  • Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M (2010) Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res 1324:75–84. doi:10.1016/j.brainres.2010.02.018

    Article  CAS  PubMed  Google Scholar 

  • Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    Article  CAS  PubMed  Google Scholar 

  • Barichello T, Martins MR, Reinke A, Feier G, Ritter C, Quevedo J, Dal-Pizzol F (2005) Cognitive impairment in sepsis survivors from cecal ligation and perforation. Crit Care Med 33:221–223

    Article  PubMed  Google Scholar 

  • Barschak AG et al (2007) Erythrocyte glutathione peroxidase activity and plasma selenium concentration are reduced in maple syrup urine disease patients during treatment. Int J Dev Neurosci 25:335–338. doi:10.1016/j.ijdevneu.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG, Marchesan C, Sitta A, Deon M, Giugliani R, Wajner M, Vargas CR (2008a) Maple syrup urine disease in treated patients: biochemical and oxidative stress profiles. Clin Biochem 41:317–324. doi:10.1016/j.clinbiochem.2007.11.015

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG, Sitta A, Deon M, Barden AT, Dutra-Filho CS, Wajner M, Vargas CR (2008b) Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis 23:71–80. doi:10.1007/s11011-007-9077-y

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG et al (2009) Amino acids levels and lipid peroxidation in maple syrup urine disease patients. Clin Biochem 42:462–466. doi:10.1016/j.clinbiochem.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  • Bitsios P, Giakoumaki SG, Theou K, Frangou S (2006) Increased prepulse inhibition of the acoustic startle response is associated with better strategy formation and execution times in healthy males. Neuropsychologia 44:2494–2499. doi:10.1016/j.neuropsychologia.2006.04.001

    Article  PubMed  Google Scholar 

  • Borglund M, Sjoblad S, Akesson B (1989) Effect of selenium supplementation on the distribution of selenium among plasma proteins of a patient with maple syrup urine disease. Euro J Pediatr 148:767–769

    Article  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    Article  CAS  PubMed  Google Scholar 

  • Bridi R, Braun CA, Zorzi GK, Wannmacher CM, Wajner M, Lissi EG, Dutra-Filho CS (2005) Alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab Brain Dis 20:155–167

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Corey SC, Moore AK (1999) Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H-2K mice. Behav Genet 29:263–271. doi:10.1023/A:1021694307672

    Article  Google Scholar 

  • Chuang DT, Shih VE (2001) Maple syrup urine disease (branched-chain ketoaciduria). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1971–2005

    Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762. doi:10.1016/j.freeradbiomed.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261. doi:10.1385/MB:26:3:249

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176

    Article  CAS  PubMed  Google Scholar 

  • Dancis J, Hutzler J, Snyderman SE, Cox RP (1972) Enzyme activity in classical and variant forms of maple syrup urine disease. J Pediatr 81:312–320

    Article  CAS  PubMed  Google Scholar 

  • de Castro VV, de Boer MA, Diligenti F, Brinco F, Mallmann F, Mello CF, Wajner M (2004) Intrahippocampal administration of the alpha-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats. Pharmacol Biochem Behav 77:183–190

    Article  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  • Dugan LL, Creedon DJ, Johnson EM Jr, Holtzman DM (1997) Rapid suppression of free radical formation by nerve growth factor involves the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 94:4086–4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266. doi:10.1006/abbi.2001.2292

    Article  CAS  PubMed  Google Scholar 

  • Fontella FU, Gassen E, Pulrolnik V, Wannmacher CM, Klein AB, Wajner M, Dutra-Filho CS (2002) Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Metab Brain Dis 17:47–54

    Article  CAS  PubMed  Google Scholar 

  • Funchal C et al (2002) Alpha-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Brain Res Dev Brain Res 139:267–276

    Article  CAS  PubMed  Google Scholar 

  • Funchal C et al (2006) Morphological alterations and induction of oxidative stress in glial cells caused by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Int 49:640–650. doi:10.1016/j.neuint.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  • Graham FK, Putnam LE, Leavitt LA (1975) Lead-stimulation effects of human cardiac orienting and blink reflexes. J Exp Psychol Hum Percept Perform 104:175–182

    CAS  PubMed  Google Scholar 

  • Halliwell B (2011) Free radicals and antioxidants - quo vadis? Trends Pharmacol Sci 32:125–130. doi:10.1016/j.tips.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2006) Free radicals in biology and medicine vol 4. Oxford University Press, Oxford

    Google Scholar 

  • Hazlett EA, Dawson ME, Schell AM, Nuechterlein KH (2001) Attentional stages of information processing during a continuous performance test: a startle modification analysis. Psychophysiology 38:669–677

    Article  CAS  PubMed  Google Scholar 

  • Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87:175–189

    Article  CAS  PubMed  Google Scholar 

  • Howell RK, Lee M (1963) Influence of alpha-ketoacids on the respiration of brain in vitro. Proc Soc Exp Biol Med 113:660–663

    Article  CAS  PubMed  Google Scholar 

  • Jain P, Sharma S, Sankhyan N, Gupta N, Kabra M, Gulati S (2013) Imaging in neonatal maple syrup urine disease. Indian J Pediatr 80:87–88. doi:10.1007/s12098-012-0850-5

    Article  PubMed  Google Scholar 

  • Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM (2003) MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 45:393–399. doi:10.1007/s00234-003-0955-7

    Article  PubMed  Google Scholar 

  • Jouvet P et al (1998) Maple syrup urine disease metabolites induce apoptosis in neural cells without cytochrome c release or changes in mitochondrial membrane potential. Biochem Soc Trans 26:S341

    Article  CAS  PubMed  Google Scholar 

  • Jouvet P, Kozma M, Mehmet H (2000a) Primary human fibroblasts from a maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids. Ann N Y Acad Sci 926:116–121

    Article  CAS  PubMed  Google Scholar 

  • Jouvet P et al (2000b) Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell 11:1919–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinkead B, Selz KA, Owens MJ, Mandell AJ (2006) Algorithmically designed peptides ameliorate behavioral defects in animal model of ADHD by an allosteric mechanism. J Neurosci Methods 151:68–81. doi:10.1016/j.jneumeth.2005.07.015

    Article  CAS  PubMed  Google Scholar 

  • Kirkman HN, Gaetani GF (2007) Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci 32:44–50. doi:10.1016/j.tibs.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  • Klee D et al (2013) Structural white matter changes in adolescents and young adults with maple syrup urine disease. J Inherit Metab Dis 36:945–953. doi:10.1007/s10545-012-9582-y

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519. doi:10.1038/74994

    Article  CAS  PubMed  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  • Lombeck I et al (1978) The selenium state of children. II. Selenium content of serum, whole blood, hair and the activity of erythrocyte glutathione peroxidase in dietetically treated patients with phenylketonuria and maple-syrup-urine disease. Euro J Pediatr 128:213–223

    Article  CAS  Google Scholar 

  • Mattson MP, Liu D (2002) Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. NeuroMolecular Med 2:215–231. doi:10.1385/NMM:2:2:215

    Article  CAS  PubMed  Google Scholar 

  • Menkes JH (1959) Maple syrup disease; isolation and identification of organic acids in the urine. Pediatrics 23:348–353

    CAS  PubMed  Google Scholar 

  • Mescka CP et al (2013) Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci 31:21–24. doi:10.1016/j.ijdevneu.2012.10.109

    Article  CAS  PubMed  Google Scholar 

  • Mescka CP et al (2015) L-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutat Res 775:43–47. doi:10.1016/j.mrfmmm.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  • Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M (2016) Oxidative stress in neurodegenerative diseases. Mol Neurobiol 53:4094–4125. doi:10.1007/s12035-015-9337-5

    Article  CAS  PubMed  Google Scholar 

  • Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(Suppl 1):133–138. doi:10.1111/j.1471-4159.2009.05897.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivieri G, Otten U, Meier F, Baysang G, Dimitriades-Schmutz B, Muller-Spahn F, Savaskan E (2002) Oxidative stress modulates tyrosine kinase receptor a and p75 receptor (low-affinity nerve growth factor receptor) expression in SHSY5Y neuroblastoma cells. Neurol Clin Neurophysiol 2002:2–10. doi:10.1162/153840902753658329

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates vol 2. Academic Press, San Diego

    Google Scholar 

  • Perry W, Minassian A, Feifel D, Braff DL (2001) Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry 50:418–424

    Article  CAS  PubMed  Google Scholar 

  • Perry W, Minassian A, Lopez B, Maron L, Lincoln A (2007) Sensorimotor gating deficits in adults with autism. Biol Psychiatry 61:482–486. doi:10.1016/j.biopsych.2005.09.025

    Article  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  CAS  PubMed  Google Scholar 

  • Quevedo J, Vianna M, Zanatta MS, Roesler R, Izquierdo I, Jerusalinsky D, Quillfeldt JA (1997) Involvement of mechanisms dependent on NMDA receptors, nitric oxide and protein kinase a in the hippocampus but not in the caudate nucleus in memory. Behav Pharmacol 8:713–717

    Article  CAS  PubMed  Google Scholar 

  • Quevedo J, Vianna MR, Roesler R, de-Paris F, Izquierdo I, Rose SP (1999) Two time windows of anisomycin-induced amnesia for inhibitory avoidance training in rats: protection from amnesia by pretraining but not pre-exposure to the task apparatus. Learn Mem 6:600–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42(Suppl 3):S125–S152. doi:10.3233/JAD-132738

    PubMed  Google Scholar 

  • Ribeiro CA et al (2008) Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup urine disease. Neurochem Res 33:114–124. doi:10.1007/s11064-007-9423-9

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al (2012a) Evaluation of acetylcholinesterase in an animal model of maple syrup urine disease. Mol Neurobiol 45:279–286. doi:10.1007/s12035-012-8243-3

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al (2012b) DNA damage in an animal model of maple syrup urine disease. Mol Genet Metab 106:169–174. doi:10.1016/j.ymgme.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al (2012c) Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease. Behav Brain Res 231:92–96. doi:10.1016/j.bbr.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al (2013a) Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis 36:721–730. doi:10.1007/s10545-012-9549-z

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al (2013b) Acute and chronic administration of the branched-chain amino acids decreases nerve growth factor in rat hippocampus. Mol Neurobiol 48:581–589. doi:10.1007/s12035-013-8447-1

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al (2014) Behavioral responses in rats submitted to chronic administration of branched-chain amino acids. JIMD reports 13:159–167. doi:10.1007/8904_2013_274

    Article  PubMed  Google Scholar 

  • Scaini G et al (2015) Acute Administration of Branched-Chain Amino Acids Increases the pro-BDNF/Total-BDNF ratio in the rat brain. Neurochem Res 40:885–893. doi:10.1007/s11064-015-1541-1

    Article  CAS  PubMed  Google Scholar 

  • Schonberger S, Schweiger B, Schwahn B, Schwarz M, Wendel U (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75. doi:10.1016/j.ymgme.2004.01.016

    Article  CAS  PubMed  Google Scholar 

  • Sgaravatti AM et al (2003) Inhibition of brain energy metabolism by the alpha-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta 1639:232–238

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  • Snyderman SE, Holt LE Jr (1964) Maple syrup urine disease. J Maine Med Assoc 55:3–5

    CAS  PubMed  Google Scholar 

  • Snyderman SE, Norton PM, Roitman E, Holt LE Jr (1964) Maple syrup urine disease, with particular reference to Dietotherapy. Pediatrics 34:454–472

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51:139–154

    Article  CAS  PubMed  Google Scholar 

  • Taketomi T, Kunishita T, Hara A, Mizushima S (1983) Abnormal protein and lipid compositions of the cerebral myelin of a patient with maple syrup urine disease. Jpn J Exp Med 53:109–116

    CAS  PubMed  Google Scholar 

  • Tavares RG, Santos CE, Tasca CI, Wajner M, Souza DO, Dutra-Filho CS (2000) Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J Neurol Sci 181:44–49

    Article  CAS  PubMed  Google Scholar 

  • Tice RR et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  • Treacy E, Clow CL, Reade TR, Chitayat D, Mamer OA, Scriver CR (1992) Maple syrup urine disease: interrelations between branched-chain amino-, oxo- and hydroxyacids; implications for treatment; associations with CNS dysmyelination. J Inherit Metab Dis 15:121–135

    Article  CAS  PubMed  Google Scholar 

  • Tribble D, Shapira R (1983) Myelin proteins: degradation in rat brain initiated by metabolites causative of maple syrup urine disease. Biochem Biophys Res Commun 114:440–446

    Article  CAS  PubMed  Google Scholar 

  • Vianna MR et al (2000) Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn Mem 7:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wajner M, Vargas CR (1999) Reduction of plasma concentrations of large neutral amino acids in patients with maple syrup urine disease during crises. Arch Dis Child 80:579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wajner M, Coelho DM, Barschak AG, Araujo PR, Pires RF, Lulhier FL, Vargas CR (2000) Reduction of large neutral amino acid concentrations in plasma and CSF of patients with maple syrup urine disease during crises. J Inherit Metab Dis 23:505–512

    Article  CAS  PubMed  Google Scholar 

  • Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448. doi:10.1023/B:BOLI.0000037353.13085.e2

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski MS et al (2016) Intracerebroventricular administration of alpha-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats. Metab Brain Dis 31:377–383. doi:10.1007/s11011-015-9768-8

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707. doi:10.1111/j.1460-9568.2004.03246.x

    Article  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Pleasure D, Stern J, Nissim I (1994) Inhibition of astrocyte glutamine production by alpha-ketoisocaproic acid. J Neurochem 63:1508–1515

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Jope RS (1999) Oxidative stress differentially modulates phosphorylation of ERK, p38 and CREB induced by NGF or EGF in PC12 cells. Neurobiol Aging 20:271–278

    Article  CAS  PubMed  Google Scholar 

  • Zielke HR, Zielke CL, Baab PJ, Collins RM (2002) Large neutral amino acids auto exchange when infused by microdialysis into the rat brain: implication for maple syrup urine disease and phenylketonuria. Neurochem Int 40:347–354

    Article  PubMed  Google Scholar 

  • Zinnanti WJ et al (2009) Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain 132:903–918. doi:10.1093/brain/awp024

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Laboratory of Bioenergetics (Brazil) is one of the centers of the National Institute for Molecular Medicine (INCT-MM) and one of the members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). This research was supported by grants from Universidade do Extremo Sul Catarinense (UNESC), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taschetto, L., Scaini, G., Zapelini, H.G. et al. Acute and long-term effects of intracerebroventricular administration of α-ketoisocaproic acid on oxidative stress parameters and cognitive and noncognitive behaviors. Metab Brain Dis 32, 1507–1518 (2017). https://doi.org/10.1007/s11011-017-0035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0035-z

Keywords

Navigation