Skip to main content

Advertisement

Log in

Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  2. Chandra Gupta S, Nandan Tripathi Y (2017) Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer 140:1955–1967

    Article  CAS  PubMed  Google Scholar 

  3. Debela DT, Muzazu SG, Heraro KD et al (2021) New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med 9:205031212110343. https://doi.org/10.1177/20503121211034366

    Article  Google Scholar 

  4. Zhang Y, Zhang Z (2020) The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol 17:807–821. https://doi.org/10.1038/s41423-020-0488-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62

    Article  CAS  PubMed  Google Scholar 

  6. Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193:651–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qian Y, Shi L, Luo Z (2020) Long non-coding RNAs in cancer: implications for diagnosis, prognosis, and therapy. Front Med 7:612393. https://doi.org/10.3389/fmed.2020.612393

    Article  Google Scholar 

  8. Jia H, Osak M, Bogu GK et al (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pauli A, Valen E, Lin MF et al (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22:577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun L, Zhang Z, Bailey TL et al (2012) Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study. BMC Bioinform 13:1–12

    Article  Google Scholar 

  11. Lemos AEG, da Rocha MA, Ferreira LB, Gimba ERP (2019) The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget 10:6589

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gupta SC, Awasthee N, Rai V et al (2020) Long non-coding RNAs and nuclear factor-κB crosstalk in cancer and other human diseases. Biochimica Biophysica Acta (BBA) 1873:188316

    CAS  Google Scholar 

  13. Cheng J, Kapranov P, Drenkow J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Wu Q, Kim YC, Lu J et al (2008) Poly A-transcripts expressed in HeLa cells. PLoS ONE 3:e2803

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Renganathan A, Felley-Bosco E (2017) Long noncoding RNAs in cancer and therapeutic potential. Long Non Coding RNA Biol. https://doi.org/10.1007/978-981-10-5203-3_7

    Article  PubMed  Google Scholar 

  16. Da M, Jiang H, Xie Y et al (2021) The biological roles of exosomal long non-coding RNAs in cancers. OTT 14:271–287. https://doi.org/10.2147/OTT.S281175

    Article  Google Scholar 

  17. Guo Y, Xie Y, Luo Y (2022) The role of long non-coding RNAs in the tumor immune microenvironment. Front Immunol 13:851004. https://doi.org/10.3389/fimmu.2022.851004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Liu Q, Liao Q (2020) Long noncoding RNA: a dazzling dancer in tumor immune microenvironment. J Exp Clin Cancer Res 39:231. https://doi.org/10.1186/s13046-020-01727-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pi Y-N, Qi W-C, Xia B-R et al (2021) Long non-coding RNAs in the tumor immune microenvironment: biological properties and therapeutic potential. Front Immunol 12:697083. https://doi.org/10.3389/fimmu.2021.697083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf

  21. Yang Z, Zhou L, Wu L-M et al (2011) Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 18:1243–1250

    Article  PubMed  Google Scholar 

  22. He X, Bao W, Li X et al (2014) The long non-coding RNA HOTAIR is upregulated in endometrial carcinoma and correlates with poor prognosis. Int J Mol Med 33:325–332. https://doi.org/10.3892/ijmm.2013.1570

    Article  CAS  PubMed  Google Scholar 

  23. Liu M, Jia J, Wang X et al (2018) Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p. Cancer Biol Ther 19:391–399. https://doi.org/10.1080/15384047.2018.1423921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo Z-F (2016) Clinical significance of HOTAIR expression in colon cancer. WJG 22:5254. https://doi.org/10.3748/wjg.v22.i22.5254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao W, Dong S, Duan B et al (2015) HOTAIR is a predictive and prognostic biomarker for patients with advanced gastric adenocarcinoma receiving fluorouracil and platinum combination chemotherapy. Am J Transl Res 7:1295–1302

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu Y, Lv F, Liang D et al (2017) HOTAIR may regulate proliferation, apoptosis, migration and invasion of MCF-7 cells through regulating the P53/Akt/JNK signaling pathway. Biomed Pharmacother 90:555–561. https://doi.org/10.1016/j.biopha.2017.03.054

    Article  CAS  PubMed  Google Scholar 

  27. Xue X, Yang YA, Zhang A et al (2016) LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 35:2746–2755. https://doi.org/10.1038/onc.2015.340

    Article  CAS  PubMed  Google Scholar 

  28. Shi Y, Li J, Liu Y et al (2015) The long noncoding RNA SPRY4-IT1 increases the proliferation of human breast cancer cells by upregulating ZNF703 expression. Mol Cancer 14:51. https://doi.org/10.1186/s12943-015-0318-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li H, Jin J, Xian J, Wang W (2021) lncRNA TPT1-AS1 knockdown inhibits liver cancer cell proliferation, migration and invasion. Mol Med Rep 24:782. https://doi.org/10.3892/mmr.2021.12422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu C, Fang K, Zhang X et al (2020) Dyregulation of the lncRNA TPT1-AS1 positively regulates QKI expression and predicts a poor prognosis for patients with breast cancer. Pathol Res Pract 216:153216. https://doi.org/10.1016/j.prp.2020.153216

    Article  CAS  PubMed  Google Scholar 

  31. Huang Y, Zheng Y, Shao X et al (2021) Long non-coding RNA TPT1-AS1 sensitizes breast cancer cell to paclitaxel and inhibits cell proliferation by miR-3156–5p/caspase 2 axis. Hum Cell 34:1244

    Article  CAS  PubMed  Google Scholar 

  32. Fang Z, Xu C, Li Y et al (2016) A feed-forward regulatory loop between androgen receptor and PlncRNA-1 promotes prostate cancer progression. Cancer Lett 374:62–74. https://doi.org/10.1016/j.canlet.2016.01.033

    Article  CAS  PubMed  Google Scholar 

  33. Song W, Mei J-Z, Zhang M (2018) Long noncoding RNA PlncRNA-1 promotes colorectal cancer cell progression by regulating the PI3K/Akt signaling pathway. Oncol Res 26:261–268. https://doi.org/10.3727/096504017X15031557924132

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang C-M, Wu Q-Q, Li S-Q et al (2014) Upregulation of the long non-coding RNA PlncRNA-1 promotes esophageal squamous carcinoma cell proliferation and correlates with advanced clinical stage. Dig Dis Sci 59:591–597. https://doi.org/10.1007/s10620-013-2956-7

    Article  CAS  PubMed  Google Scholar 

  35. Baratieh Z, Khalaj Z, Honardoost MA et al (2017) Aberrant expression of PlncRNA-1 and TUG1: potential biomarkers for gastric cancer diagnosis and clinically monitoring cancer progression. Biomark Med 11:1077–1090. https://doi.org/10.2217/bmm-2017-0090

    Article  CAS  PubMed  Google Scholar 

  36. Zhang M, Wang Y, Jiang L et al (2021) LncRNA CBR3-AS1 regulates of breast cancer drug sensitivity as a competing endogenous RNA through the JNK1/MEK4-mediated MAPK signal pathway. J Exp Clin Cancer Res 40:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kang SH, Cho J, Jeong H, Kwon SY (2018) High RNA-binding motif protein 3 expression is associated with improved clinical outcomes in invasive breast cancer. J Breast Cancer 21:288. https://doi.org/10.4048/jbc.2018.21.e34

    Article  PubMed  PubMed Central  Google Scholar 

  38. Venugopal A, Subramaniam D, Balmaceda J et al (2016) RNA binding protein RBM3 increases β-catenin signaling to increase stem cell characteristics in colorectal cancer cells. Mol Carcinog 55:1503–1516. https://doi.org/10.1002/mc.22404

    Article  CAS  PubMed  Google Scholar 

  39. Zeng Y, Wodzenski D, Gao D et al (2013) Stress-response protein RBM3 attenuates the stem-like properties of prostate cancer cells by interfering with CD44 variant splicing. Can Res 73:4123–4133. https://doi.org/10.1158/0008-5472.CAN-12-1343

    Article  CAS  Google Scholar 

  40. Ehlén Å, Brennan DJ, Nodin B et al (2010) Expression of the RNA-binding protein RBM3 is associated with a favourable prognosis and cisplatin sensitivity in epithelial ovarian cancer. J Transl Med 8:78. https://doi.org/10.1186/1479-5876-8-78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boman K, Segersten U, Ahlgren G et al (2013) Decreased expression of RNA-binding motif protein 3 correlates with tumour progression and poor prognosis in urothelial bladder cancer. BMC Urol 13:17. https://doi.org/10.1186/1471-2490-13-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jonsson L, Bergman J, Nodin B et al (2011) Low RBM3 protein expression correlates with tumour progression and poor prognosis in malignant melanoma: an analysis of 215 cases from the Malmö diet and cancer study. J Transl Med 9:114. https://doi.org/10.1186/1479-5876-9-114

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen P, Yue X, Xiong H et al (2019) RBM3 upregulates ARPC2 by binding the 3’UTR and contributes to breast cancer progression. Int J Oncol. https://doi.org/10.3892/ijo.2019.4698

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sha S, Yuan D, Liu Y et al (2017) Targeting long non-coding RNA DANCR inhibits triple negative breast cancer progression. Biol Open 6:1310–1316

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Müller V, Oliveira-Ferrer L, Steinbach B et al (2019) Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Mol Oncol 13:1137–1149. https://doi.org/10.1002/1878-0261.12472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lottin S (2002) Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 23:1885–1895. https://doi.org/10.1093/carcin/23.11.1885

    Article  CAS  PubMed  Google Scholar 

  47. Li Z, Li Y, Li Y et al (2017) Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152: LI ET AL. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.21933

    Article  PubMed  Google Scholar 

  48. Zhang M, Wu W-B, Wang Z-W, Wang X-H (2017) lncRNA NEAT1 is closely related with progression of breast cancer via promoting proliferation and EMT. Eur Rev Med Pharmacol Sci 21:1020–1026

    CAS  PubMed  Google Scholar 

  49. Shin VY, Chen J, Cheuk IW-Y et al (2019) Long non-coding RNA NEAT1 confers oncogenic role in triple-negative breast cancer through modulating chemoresistance and cancer stemness. Cell Death Dis 10:270. https://doi.org/10.1038/s41419-019-1513-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang X, Zhou Y, Sun A, Xue J (2018) NEAT1 contributes to breast cancer progression through modulating miR-448 and ZEB1. J Cell Physiol 233:8558–8566. https://doi.org/10.1002/jcp.26470

    Article  CAS  PubMed  Google Scholar 

  51. Zhang B, Arun G, Mao YS et al (2012) The lncRNA malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2:111–123. https://doi.org/10.1016/j.celrep.2012.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jadaliha M, Zong X, Malakar P et al (2016) Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget 7:40418–40436. https://doi.org/10.18632/oncotarget.9622

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li Z, Xu L, Liu Y et al (2018) LncRNA MALAT1 promotes relapse of breast cancer patients with postoperative fever. Am J Transl Res 10:3186–3197

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zuo Y, Li Y, Zhou Z et al (2017) Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomed Pharmacother 95:922–928. https://doi.org/10.1016/j.biopha.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  55. Jin C, Bingchuan Y, Lu Q et al (2016) Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumor Biol 37:7383–7394. https://doi.org/10.1007/s13277-015-4605-6

    Article  CAS  Google Scholar 

  56. Basumallik N, Agarwal M (2021) Small cell lung cancer. In: StatPearls [internet]. StatPearls Publishing, St. Petersburg

    Google Scholar 

  57. Hou M, Wu N, Yao L (2021) LncRNA CBR3-AS1 potentiates Wnt/β-catenin signaling to regulate lung adenocarcinoma cells proliferation, migration and invasion. Cancer Cell Int 21:1–12

    Article  Google Scholar 

  58. Qi Y-T, Hou Y, Qi L-C (2020) Efficacy of next-generation EGFR-TKIs in patients with non-small cell lung cancer: a meta-analysis of randomized controlled trials. Technol Cancer Res Treat 19:1533033820940426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ren W, Yuan Y, Peng J et al (2022) The function and clinical implication of circular RNAs in lung cancer. Front Oncol 12:862602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang Z, Wang Z, Duan Y (2020) LncRNA MEG3 inhibits non-small cell lung cancer via interaction with DKC1 protein. Oncol Lett 20:2183–2190

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu JL, Meng FM, Li HJ (2018) High expression of lncRNA MEG3 participates in non-small cell lung cancer by regulating microRNA-7-5p. Eur Rev Med Pharmacol Sci 22:5938–5945

    PubMed  Google Scholar 

  62. Ma J, Miao H, Zhang H et al (2021) LncRNA GAS5 modulates the progression of non-small cell lung cancer through repressing miR-221-3p and up-regulating IRF2. Diagn Pathol 16:1–9

    Article  Google Scholar 

  63. Xue Y, Ni T, Jiang Y, Li Y (2017) Long noncoding RNA GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in non-small cell lung cancer. Oncol Res Featur Preclin Clin Cancer Ther 25:1305–1316

    Google Scholar 

  64. Sun M, Liu XH, Lu KH et al (2014) EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4-IT1 promote s NSCLC cell proliferation and metastasis by affecting the epithelial–mesenchymal transition. Cell Death Dis 5:e1298–e1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031–8041

    Article  PubMed  Google Scholar 

  66. Weber DG, Johnen G, Casjens S et al (2013) Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res Notes 6:1–9

    Article  Google Scholar 

  67. Liang H, Peng J (2022) LncRNA HOTAIR promotes proliferation, invasion and migration in NSCLC cells via the CCL22 signaling pathway. PLoS ONE 17:e0263997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu L, Liu L, Lu S (2019) lncRNA H19 promotes viability and epithelial-mesenchymal transition of lung adenocarcinoma cells by targeting miR-29b-3p and modifying STAT3. Int J Oncol 54:929–941

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu P, He X, Lu F et al (2022) Research progress regarding long-chain non-coding RNA in lung cancer: a narrative review. J Thorac Dis 14:3016

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yin X, Lin H, Lin L et al (2022) LncRNAs and CircRNAs in cancer. MedComm 3:e141

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gao J, Ding C, Zhou J et al (2021) Propofol suppresses lung cancer tumorigenesis by modulating the circ-ERBB2/miR-7-5p/FOXM1 axis. Thorac Cancer 12:824–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xiong S, Li D, Wang D et al (2020) Circular RNA MYLK promotes glycolysis and proliferation of non-small cell lung cancer cells by sponging miR-195-5p and increasing glucose transporter member 3 expression. Cancer Manag Res 12:5469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu J, Zhu Y, Qin Y, Chen Y (2020) CircNFIX acts as a miR-212-3p sponge to enhance the malignant progression of non-small cell lung cancer by up-regulating ADAM10. Cancer Manag Res 12:9577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen J, Xu S, Chen S et al (2019) CircPUM1 promotes the malignant behavior of lung adenocarcinoma by regulating miR-326. Biochem Biophys Res Commun 508:844–849

    Article  CAS  PubMed  Google Scholar 

  75. Liang Y, Wang H, Chen B et al (2021) circDCUN1D4 suppresses tumor metastasis and glycolysis in lung adenocarcinoma by stabilizing TXNIP expression. Mol Ther Nucl Acids 23:355–368

    Article  CAS  Google Scholar 

  76. Guo F, Li S, Guo C et al (2020) Circular RNA circMAGI3 accelerates the glycolysis of non-small cell lung cancer through miR-515-5p/HDGF. Am J Transl Res 12:3953

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shangguan H, Feng H, Lv D et al (2020) Circular RNA circSLC25A16 contributes to the glycolysis of non-small-cell lung cancer through epigenetic modification. Cell Death Dis 11:437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tan Q, Liu C, Shen Y, Huang T (2021) Circular RNA circ_0000517 facilitates the growth and metastasis of non-small cell lung cancer by sponging miR-326/miR-330-5p. Cell J (Yakhteh) 23:552

    Google Scholar 

  79. Bing Z-X, Zhang J-Q, Wang G-G et al (2021) Silencing of circ_0000517 suppresses proliferation, glycolysis, and glutamine decomposition of non-small cell lung cancer by modulating miR-330-5p/YY1 signal pathway. Kaohsiung J Med Sci 37:1027–1037

    Article  CAS  PubMed  Google Scholar 

  80. Zhao H, Wei H, He J et al (2020) Propofol disrupts cell carcinogenesis and aerobic glycolysis by regulating circTADA2A/miR-455-3p/FOXM1 axis in lung cancer. Cell Cycle 19:2538–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang B, Zhao F, Yao L et al (2021) CircRNA circ_0006677 inhibits the progression and glycolysis in non–small-cell lung cancer by sponging miR-578 and regulating SOCS2 expression. Front Pharmacol 12:657053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou J, Zhang S, Chen Z et al (2019) CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis 10:885

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xue M, Hong W, Jiang J et al (2020) Circular RNA circ-LDLRAD3 serves as an oncogene to promote non-small cell lung cancer progression by upregulating SLC1A5 through sponging miR-137. RNA Biol 17:1811–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guan H, Sun C, Gu Y et al (2021) Circular RNA circ_0003028 contributes to tumorigenesis by regulating GOT2 via miR-1298-5p in non-small cell lung cancer. Bioengineered 12:2326–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lv J, Li Q, Ma R et al (2021) Long noncoding RNA FGD5-AS1 knockdown decrease viability, migration, and invasion of non-small cell lung cancer (NSCLC) cells by regulating the microRNA-944/MACC1 axis. Technol Cancer Res Treat 20:1533033821990090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gong W, Su Y, Liu Y et al (2018) Long non-coding RNA Linc00662 promotes cell invasion and contributes to cancer stem cell-like phenotypes in lung cancer cells. J Biochem 164:461–469

    Article  CAS  PubMed  Google Scholar 

  87. Yan F, Zhao W, Xu X et al (2020) LncRNA DHRS4-AS1 inhibits the stemness of NSCLC cells by sponging miR-224-3p and upregulating TP53 and TET1. Front Cell Dev Biol 8:585251

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pang Z, Chen X, Wang Y et al (2021) Long non-coding RNA C5orf64 is a potential indicator for tumor microenvironment and mutation pattern remodeling in lung adenocarcinoma. Genomics 113:291–304

    Article  CAS  PubMed  Google Scholar 

  89. Miao L, Huang Z, Zengli Z et al (2016) Loss of long noncoding RNA FOXF1-AS1 regulates epithelial-mesenchymal transition, stemness and metastasis of non-small cell lung cancer cells. Oncotarget 7:68339

    Article  PubMed  PubMed Central  Google Scholar 

  90. Xu M, Chen X, Lin K et al (2019) lncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. J Hematol Oncol 12:3. https://doi.org/10.1186/s13045-018-0690-5

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang M, Han D, Yuan Z et al (2018) Long non-coding RNA H19 confers 5-Fu resistance in colorectal cancer by promoting SIRT1-mediated autophagy. Cell Death Dis 9:1149. https://doi.org/10.1038/s41419-018-1187-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tsang WP, Ng EKO, Ng SSM et al (2010) Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 31:350–358. https://doi.org/10.1093/carcin/bgp181

    Article  CAS  PubMed  Google Scholar 

  93. Li W, Ke C, Yang C et al (2023) LncRNA DICER1-AS1 promotes colorectal cancer progression by activating the MAPK/ERK signaling pathway through sponging miR -650. Cancer Med. https://doi.org/10.1002/cam4.5550

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kogo R, Shimamura T, Mimori K et al (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Can Res 71:6320–6326

    Article  CAS  Google Scholar 

  95. Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xie J, Zhu J, Pang J, Ma Y (2021) HLA complex group 11 is involved in colorectal carcinoma cisplatin resistance via the miR-214-5p/SOX4 axis. Oncol Lett 22:1–12

    Article  Google Scholar 

  97. Dong X, Yang Z, Yang H et al (2020) Long non-coding RNA MIR4435-2HG promotes colorectal cancer proliferation and metastasis through miR-206/YAP1 Axis. Front Oncol 10:160. https://doi.org/10.3389/fonc.2020.00160

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ye C, Shen Z, Wang B et al (2016) A novel long non-coding RNA lnc-GNAT1-1 is low expressed in colorectal cancer and acts as a tumor suppressor through regulating RKIP-NF-κB-Snail circuit. J Exp Clin Cancer Res 35:187. https://doi.org/10.1186/s13046-016-0467-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu Q-N, Luo X-J, Liu J et al (2021) MYC-Activated LncRNA MNX1-AS1 promotes the progression of colorectal cancer by stabilizing YB1. Can Res 81:2636–2650. https://doi.org/10.1158/0008-5472.CAN-20-3747

    Article  CAS  Google Scholar 

  100. Tang X, Ruan H, Dong L et al (2021) lncRNA GAU1 induces GALNT8 overexpression and potentiates colorectal cancer progression. Gastroenterol Res Pract 2021:1–12. https://doi.org/10.1155/2021/5960821

    Article  Google Scholar 

  101. Li B, Kang H, Xiao Y et al (2022) LncRNA GAL promotes colorectal cancer liver metastasis through stabilizing GLUT1. Oncogene 41:1882–1894. https://doi.org/10.1038/s41388-022-02230-z

    Article  CAS  PubMed  Google Scholar 

  102. Garnick MB, Fair WR (1998) Combating prostate cancer. Sci Am 279:74–83. https://doi.org/10.1038/scientificamerican1298-74

    Article  CAS  PubMed  Google Scholar 

  103. Prensner JR, Iyer MK, Balbin OA et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29:742–749. https://doi.org/10.1038/nbt.1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kotake Y, Nakagawa T, Kitagawa K et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene 30:1956–1962. https://doi.org/10.1038/onc.2010.568

    Article  CAS  PubMed  Google Scholar 

  105. Yap KL, Li S, Muñoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674. https://doi.org/10.1016/j.molcel.2010.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ghafouri-Fard S, Khoshbakht T, Hussen BM et al (2022) A review on the role of PCA3 lncRNA in carcinogenesis with an especial focus on prostate cancer. Pathol Res Pract 231:153800. https://doi.org/10.1016/j.prp.2022.153800

    Article  CAS  PubMed  Google Scholar 

  107. Liu H, He X, Li T et al (2022) PCGEM1 promotes proliferation, migration and invasion in prostate cancer by sponging miR-506 to upregulate TRIAP1. BMC Urol 22:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang L, Lin C, Jin C et al (2013) lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500:598–602. https://doi.org/10.1038/nature12451

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hao H, Chen H, Xie L et al (2021) LncRNA KCNQ1OT1 promotes proliferation, invasion and metastasis of prostate cancer by regulating miR-211-5p/CHI3L1 pathway. Onco Targets Ther 14:1659

    Article  PubMed  PubMed Central  Google Scholar 

  110. Yan K, Hou L, Liu T et al (2020) lncRNA OGFRP1 functions as a ceRNA to promote the progression of prostate cancer by regulating SARM1 level via miR-124-3p. Aging 12:8880–8892. https://doi.org/10.18632/aging.103007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang C, Ding T, Yang D et al (2021) The lncRNA OGFRP1/miR-149-5p/IL-6 axis regulates prostate cancer chemoresistance. Pathol Res Pract 224:153535

    Article  CAS  PubMed  Google Scholar 

  112. Lingadahalli S, Jadhao S, Sung YY et al (2018) Novel lncRNA LINC00844 regulates prostate cancer cell migration and invasion through AR signaling. Mol Cancer Res 16:1865–1878. https://doi.org/10.1158/1541-7786.MCR-18-0087

    Article  CAS  PubMed  Google Scholar 

  113. Zhou W, Huang K, Zhang Q et al (2020) LINC00844 promotes proliferation and migration of hepatocellular carcinoma by regulating NDRG1 expression. PeerJ 8:e8394. https://doi.org/10.7717/peerj.8394

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sidiropoulos M, Chang A, Jung K, Diamandis EP (2001) Expression and regulation of prostate androgen regulated transcript-1 (PART-1) and identification of differential expression in prostatic cancer. Br J Cancer 85:393–397. https://doi.org/10.1054/bjoc.2001.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lin B, White JT, Ferguson C et al (2000) PART-1: a novel human prostate-specific, androgen-regulated gene that maps to chromosome 5q12. Cancer Res 60:858–863

    CAS  PubMed  Google Scholar 

  116. Sun M, Geng D, Li S et al (2018) LncRNA PART1 modulates toll-like receptor pathways to influence cell proliferation and apoptosis in prostate cancer cells. Biol Chem 399:387–395. https://doi.org/10.1515/hsz-2017-0255

    Article  CAS  PubMed  Google Scholar 

  117. Huang W, Su X, Yan W et al (2018) Overexpression of AR-regulated lncRNA TMPO-AS1 correlates with tumor progression and poor prognosis in prostate cancer. Prostate 78:1248–1261. https://doi.org/10.1002/pros.23700

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Y, Zhang D, Lv J et al (2019) LncRNA SNHG15 acts as an oncogene in prostate cancer by regulating miR-338-3p/FKBP1A axis. Gene 705:44–50. https://doi.org/10.1016/j.gene.2019.04.033

    Article  CAS  PubMed  Google Scholar 

  119. Gu P, Chen X, Xie R et al (2019) A novel AR translational regulator lncRNA LBCS inhibits castration resistance of prostate cancer. Mol Cancer 18:1–14

    Article  CAS  Google Scholar 

  120. Chen W, Yu Z, Huang W et al (2020) LncRNA LINC00665 promotes prostate cancer progression via miR-1224-5p/SND1 axis. Onco Targets Ther 13:2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yu X, Li Z, Zheng H et al (2017) NEAT1: a novel cancer-related long non-coding RNA. Cell Prolif 50:e12329. https://doi.org/10.1111/cpr.12329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Du Y, Kong G, You X et al (2012) Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem 287:26302–26311. https://doi.org/10.1074/jbc.M112.342113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang J, Liu X, Wu H et al (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38:5366–5383. https://doi.org/10.1093/nar/gkq285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen N, Guo D, Xu Q et al (2016) Long non-coding RNA FEZF1-AS1 facilitates cell proliferation and migration in colorectal carcinoma. Oncotarget 7:11271–11283. https://doi.org/10.18632/oncotarget.7168

    Article  PubMed  PubMed Central  Google Scholar 

  125. Liu Y, Xia R, Lu K et al (2017) LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation. Mol Cancer 16:39. https://doi.org/10.1186/s12943-017-0588-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. He R, Zhang F, Shen N (2017) LncRNA FEZF1-AS1 enhances epithelial-mesenchymal transition (EMT) through suppressing E-cadherin and regulating WNT pathway in non-small cell lung cancer (NSCLC). Biomed Pharmacother 95:331–338. https://doi.org/10.1016/j.biopha.2017.08.057

    Article  CAS  PubMed  Google Scholar 

  127. Gong J, Wang J, Liu T et al (2018) lncRNA FEZF1-AS1 contributes to cell proliferation, migration and invasion by sponging miR-4443 in hepatocellular carcinoma. Mol Med Rep. https://doi.org/10.3892/mmr.2018.9585

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chen Y, Zhang J, Liu J et al (2022) The expression and clinical significance of PCNAP1 in hepatocellular carcinoma patients. J Immunol Res 2022:1–7. https://doi.org/10.1155/2022/1817694

    Article  CAS  Google Scholar 

  129. Feng J, Yang G, Liu Y et al (2019) LncRNA PCNAP1 modulates hepatitis B virus replication and enhances tumor growth of liver cancer. Theranostics 9:5227–5245. https://doi.org/10.7150/thno.34273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang Y, Zhu P, Luo J et al (2019) LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. EMBO J. https://doi.org/10.15252/embj.2018101110

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhang Z, Wang S, Liu Y et al (2019) Low lncRNA ZNF385D-AS2 expression and its prognostic significance in liver cancer. Oncol Rep. https://doi.org/10.3892/or.2019.7238

    Article  PubMed  PubMed Central  Google Scholar 

  132. Luo J, Zheng J, Hao W et al (2021) lncRNA PCAT6 facilitates cell proliferation and invasion via regulating the miR-326/hnRNPA2B1 axis in liver cancer. Oncol Lett 21:471. https://doi.org/10.3892/ol.2021.12732

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liang W, Shi C, Hong W et al (2021) Super-enhancer-driven lncRNA-DAW promotes liver cancer cell proliferation through activation of Wnt/β-catenin pathway. Mol Therapy Nucleic Acids 26:1351–1363. https://doi.org/10.1016/j.omtn.2021.10.028

    Article  CAS  Google Scholar 

  134. Huang T, Wu Z, Zhu S (2022) The roles and mechanisms of the lncRNA-miRNA axis in the progression of esophageal cancer: a narrative review. J Thorac Dis 14:4545

    Article  PubMed  PubMed Central  Google Scholar 

  135. Liu H-F, Zhen Q, Fan Y-K (2020) LINC00963 predicts poor prognosis and promotes esophageal cancer cells invasion via targeting miR-214–5p/RAB14 axis. Eur Rev Med Pharmacol Sci 24:164–173. https://doi.org/10.26355/eurrev_202001_19907

    Article  PubMed  Google Scholar 

  136. Hu J, Gao W (2021) Long noncoding RNA PVT1 promotes tumour progression via the miR-128/ZEB1 axis and predicts poor prognosis in esophageal cancer. Clin Res Hepatol Gastroenterol 45:101701. https://doi.org/10.1016/j.clinre.2021.101701

    Article  CAS  PubMed  Google Scholar 

  137. Xie Z, Liu S, Chu S et al (2021) lncRNA RMRP predicts poor prognosis and mediates tumor progression of esophageal squamous cell carcinoma by regulating miR-613/ neuropilin 2 (NRP2) axis. Bioengineered 12:6913–6922. https://doi.org/10.1080/21655979.2021.1974656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ma J, Li T-F, Han X-W, Yuan H-F (2019) Downregulated MEG3 contributes to tumour progression and poor prognosis in oesophagal squamous cell carcinoma by interacting with miR-4261, downregulating DKK2 and activating the Wnt/β-catenin signalling. Artif Cells Nanomed Biotechnol 47:1513–1523. https://doi.org/10.1080/21691401.2019.1602538

    Article  CAS  PubMed  Google Scholar 

  139. Su M, Xiao Y, Ma J et al (2018) Long non-coding RNAs in esophageal cancer: molecular mechanisms, functions, and potential applications. J Hematol Oncol 11:118. https://doi.org/10.1186/s13045-018-0663-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cabasag CJ, Fagan PJ, Ferlay J et al (2022) Ovarian cancer today and tomorrow: a global assessment by world region and human development index using GLOBOCAN 2020. Int J Cancer 151:1535–1541. https://doi.org/10.1002/ijc.34002

    Article  CAS  PubMed  Google Scholar 

  141. Wang W, Min L, Qiu X et al (2021) Biological function of long non-coding RNA (LncRNA) xist. Front Cell Dev Biol 9:645647. https://doi.org/10.3389/fcell.2021.645647

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wang C, Qi S, Xie C et al (2018) Upregulation of long non-coding RNA XIST has anticancer effects on epithelial ovarian cancer cells through inverse downregulation of hsa-miR-214-3p. J Gynecol Oncol 29:e99. https://doi.org/10.3802/jgo.2018.29.e99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zuo K, Zhao Y, Zheng Y et al (2019) Long non-coding RNA XIST promotes malignant behavior of epithelial ovarian cancer. OTT 12:7261–7267. https://doi.org/10.2147/OTT.S204369

    Article  CAS  Google Scholar 

  144. Zhu Z, Song L, He J et al (2015) Ectopic expressed long non-coding RNA H19 contributes to malignant cell behavior of ovarian cancer. Int J Clin Exp Pathol 8:10082

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang Y, Gao W (2021) Long non-coding RNA-H19 promotes ovarian cancer cell proliferation and migration via the microRNA -140/Wnt1 axis. Kaohsiung J Med Sci 37:768–775. https://doi.org/10.1002/kjm2.12393

    Article  CAS  PubMed  Google Scholar 

  146. Zhu L, Wang A, Gao M et al (2020) LncRNA MIR4435-2HG triggers ovarian cancer progression by regulating miR-128-3p/CKD14 axis. Cancer Cell Int 20:145. https://doi.org/10.1186/s12935-020-01227-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Du W, Feng Z, Sun Q (2018) LncRNA LINC00319 accelerates ovarian cancer progression through miR-423-5p/NACC1 pathway. Biochem Biophys Res Commun 507:198–202. https://doi.org/10.1016/j.bbrc.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  148. Wang X, Yang B, She Y, Ye Y (2018) The lncRNA TP73-AS1 promotes ovarian cancer cell proliferation and metastasis via modulation of MMP2 and MMP9. J Cell Biochem 119:7790–7799. https://doi.org/10.1002/jcb.27158

    Article  CAS  PubMed  Google Scholar 

  149. Li J, Zhuang C, Liu Y et al (2016) Synthetic tetracycline-controllable shRNA targeting long non-coding RNA HOXD-AS1 inhibits the progression of bladder cancer. J Exp Clin Cancer Res 35:1–10

    Article  Google Scholar 

  150. Yarmishyn AA, Batagov AO, Tan JZ et al (2014) HOXD-AS1 is a novel lncRNA encoded in HOXD cluster and a marker of neuroblastoma progression revealed via integrative analysis of noncoding transcriptome. BMC Genomics 15:1–14

    Article  Google Scholar 

  151. Zhang Y, Dun Y, Zhou S, Huang X-H (2017) LncRNA HOXD-AS1 promotes epithelial ovarian cancer cells proliferation and invasion by targeting miR-133a-3p and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother 96:1216–1221

    Article  CAS  PubMed  Google Scholar 

  152. Xi J, Feng J, Zeng S (2017) Long noncoding RNA lncBRM facilitates the proliferation, migration and invasion of ovarian cancer cells via upregulation of Sox4. Am J Cancer Res 7:2180

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Dong L, Hui L (2016) HOTAIR promotes proliferation, migration, and invasion of ovarian cancer SKOV3 cells through regulating PIK3R3. Med Sci Monit 22:325–331. https://doi.org/10.12659/MSM.894913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gao Y, Meng H, Liu S et al (2015) LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b. Hum Mol Genet 24:841–852. https://doi.org/10.1093/hmg/ddu502

    Article  CAS  PubMed  Google Scholar 

  155. Silva JM, Boczek NJ, Berres MW et al (2011) LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol 8:496–505. https://doi.org/10.4161/rna.8.3.14800

    Article  CAS  PubMed  Google Scholar 

  156. Gloss BS, Patterson KI, Barton CA et al (2012) Integrative genome-wide expression and promoter DNA methylation profiling identifies a potential novel panel of ovarian cancer epigenetic biomarkers. Cancer Lett 318:76–85. https://doi.org/10.1016/j.canlet.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  157. Hu X, Feng Y, Zhang D et al (2014) A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell 26:344–357. https://doi.org/10.1016/j.ccr.2014.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zou T, Wang PL, Gao Y, Liang WT (2019) Long noncoding RNA HOTTIP is a significant indicator of ovarian cancer prognosis and enhances cell proliferation and invasion. CBM 25:133–139. https://doi.org/10.3233/CBM-181727

    Article  CAS  Google Scholar 

  159. Tan C, Liu W, Zheng Z, Wan X (2021) LncRNA HOTTIP inhibits cell pyroptosis by targeting miR-148a-3p/AKT2 axis in ovarian cancer. Cell Biol Int 45:1487–1497. https://doi.org/10.1002/cbin.11588

    Article  CAS  PubMed  Google Scholar 

  160. Zhou X, Liu M, Deng G et al (2021) lncRNA LOC102724169 plus cisplatin exhibit the synergistic anti-tumor effect in ovarian cancer with chronic stress. Mol Ther Nucleic Acids 24:294–309. https://doi.org/10.1016/j.omtn.2021.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Johnson DE, Burtness B, Leemans CR et al (2020) Head and neck squamous cell carcinoma. Nat Rev Dis Primers 6:92. https://doi.org/10.1038/s41572-020-00224-3

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kumar R, Rai AK, Das D et al (2015) Alcohol and tobacco increases risk of high risk HPV infection in head and neck cancer patients: study from north-east region of India. PLoS ONE 10:e0140700. https://doi.org/10.1371/journal.pone.0140700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bueno-Urquiza LJ, Martínez-Barajas MG, Villegas-Mercado CE et al (2023) The two faces of immune-related lncRNAs in head and neck squamous cell carcinoma. Cells 12:727. https://doi.org/10.3390/cells12050727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang R, Ma Z, Feng L et al (2018) LncRNA MIR31HG targets HIF1A and P21 to facilitate head and neck cancer cell proliferation and tumorigenesis by promoting cell-cycle progression. Mol Cancer 17:162. https://doi.org/10.1186/s12943-018-0916-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yu Z, Wang X, Niu K et al (2022) LncRNA TM4SF19-AS1 exacerbates cell proliferation, migration, invasion, and EMT in head and neck squamous cell carcinoma via enhancing LAMC1 expression. Cancer Biol Ther 23:1–9. https://doi.org/10.1080/15384047.2022.2116923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li H, Yang Z, Yang X et al (2022) LINC01123 promotes immune escape by sponging miR-214-3p to regulate B7–H3 in head and neck squamous-cell carcinoma. Cell Death Dis 13:109. https://doi.org/10.1038/s41419-022-04542-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen Y, Luo T-Q, Xu S-S et al (2021) An immune-related seven-lncRNA signature for head and neck squamous cell carcinoma. Cancer Med 10:2268–2285. https://doi.org/10.1002/cam4.3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Peña-Flores JA, Bermúdez M, Ramos-Payán R et al (2022) Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 12:965628. https://doi.org/10.3389/fonc.2022.965628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kozłowska J, Kolenda T, Poter P et al (2021) Long intergenic non-coding RNAs in HNSCC: from “Junk DNA” to important prognostic factor. Cancers (Basel) 13:2949. https://doi.org/10.3390/cancers13122949

    Article  CAS  PubMed  Google Scholar 

  170. Guglas K, Bogaczyńska M, Kolenda T et al (2017) lncRNA in HNSCC: challenges and potential. Contemp Oncol (Pozn) 21:259–266. https://doi.org/10.5114/wo.2017.72382

    Article  CAS  PubMed  Google Scholar 

  171. Dey Ghosh R, Guha Majumder S (2022) Circulating long non-coding RNAs could be the potential prognostic biomarker for liquid biopsy for the clinical management of oral squamous cell carcinoma. Cancers 14:5590. https://doi.org/10.3390/cancers14225590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rajendran P, Sekar R, Zahra HA et al (2023) Salivaomics to decode non-coding RNAs in oral cancer. A narrative review. Non-coding RNA Res 8:376–384. https://doi.org/10.1016/j.ncrna.2023.05.001

    Article  CAS  Google Scholar 

  173. Liu M, Liu Q, Fan S et al (2021) LncRNA LTSCCAT promotes tongue squamous cell carcinoma metastasis via targeting the miR-103a-2-5p/SMYD3/TWIST1 axis. Cell Death Dis 12:144

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hu Y, Wang X, Li C et al (2021) LINC01783 accelerated tongue squamous cell carcinoma progression via inhibiting miR-199b-5p. J Cell Mol Med 25:8140–8147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chen X, Xu H, Sun G, Zhang Y (2020) LncRNA CASC9 affects cell proliferation, migration, and invasion of tongue squamous cell carcinoma via regulating miR-423-5p/SOX12 axes. Cancer Manag Res 12:277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhao X, Hong Y, Cheng Q, Guo L (2020) LncRNA PART1 exerts tumor-suppressive functions in tongue squamous cell carcinoma via miR-503-5p. Onco Targets Ther 13:9977–9989. https://doi.org/10.2147/OTT.S264410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jia L-F, Wei S-B, Gan Y-H et al (2014) Expression, regulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma. Int J Cancer 135:2282–2293. https://doi.org/10.1002/ijc.28667

    Article  CAS  PubMed  Google Scholar 

  178. Song Y, Pan Y, Liu J (2019) Functional analysis of lncRNAs based on competitive endogenous RNA in tongue squamous cell carcinoma. PeerJ 7:e6991. https://doi.org/10.7717/peerj.6991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang Q, Feng Z, Shi S et al (2020) Comprehensive analysis of lncRNA-associated ceRNA network reveals the novel potential of lncRNA, miRNA and mRNA biomarkers in human rectosigmoid junction cancer. Oncol Lett 21:144. https://doi.org/10.3892/ol.2020.12405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Huang W, Cui X, Chen J et al (2016) Long non-coding RNA NKILA inhibits migration and invasion of tongue squamous cell carcinoma cells via suppressing epithelial-mesenchymal transition. Oncotarget 7:62520–62532. https://doi.org/10.18632/oncotarget.11528

    Article  PubMed  PubMed Central  Google Scholar 

  181. Xiong L, Tang Y, Tang J et al (2020) Downregulation of lncRNA HOTTIP suppresses the proliferation, migration, and invasion of oral tongue squamous cell carcinoma by regulation of HMGA2-mediated Wnt/β-catenin pathway. Cancer Biother Radiopharm 35:720–730. https://doi.org/10.1089/cbr.2019.3017

    Article  CAS  PubMed  Google Scholar 

  182. Mu M, Li Y, Zhan Y et al (2018) Knockdown of HOXA transcript at the distal tip suppresses the growth and invasion and induces apoptosis of oral tongue squamous carcinoma cells. OTT 11:8033–8044. https://doi.org/10.2147/OTT.S174637

    Article  CAS  Google Scholar 

  183. Zheng Y, Zheng B, Meng X et al (2019) LncRNA DANCR promotes the proliferation, migration, and invasion of tongue squamous cell carcinoma cells through miR-135a-5p/KLF8 axis. Cancer Cell Int 19:302. https://doi.org/10.1186/s12935-019-1016-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Jia B, Xie T, Qiu X et al (2019) Long noncoding RNA FALEC inhibits proliferation and metastasis of tongue squamous cell carcinoma by epigenetically silencing ECM1 through EZH2. Aging 11:4990–5007. https://doi.org/10.18632/aging.102094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Li Y, Wan Q, Wang W et al (2019) LncRNA ADAMTS9-AS2 promotes tongue squamous cell carcinoma proliferation, migration and EMT via the miR-600/EZH2 axis. Biomed Pharmacother 112:108719. https://doi.org/10.1016/j.biopha.2019.108719

    Article  CAS  PubMed  Google Scholar 

  186. Chen Y, Guo Y, Yan W (2019) lncRNA RP5-916L7.2 correlates with advanced tumor stage, and promotes cells proliferation while inhibits cells apoptosis through targeting miR-328 and miR-939 in tongue squamous cell carcinoma. Clin Biochem 67:24–32. https://doi.org/10.1016/j.clinbiochem.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  187. Fang Z, Zhang S, Wang Y et al (2016) Long non-coding RNA MALAT-1 modulates metastatic potential of tongue squamous cell carcinomas partially through the regulation of small proline rich proteins. BMC Cancer 16:706. https://doi.org/10.1186/s12885-016-2735-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yuan J, Xu X-J, Lin Y et al (2019) LncRNA MALAT1 expression inhibition suppresses tongue squamous cell carcinoma proliferation, migration and invasion by inactivating PI3K/Akt pathway and downregulating MMP-9 expression. Eur Rev Med Pharmacol Sci 23:198–206. https://doi.org/10.26355/eurrev_201901_16765

    Article  CAS  PubMed  Google Scholar 

  189. Zhu M, Zhang C, Chen D et al (2019) lncRNA MALAT1 potentiates the progression of tongue squamous cell carcinoma through regulating miR-140-5p-PAK1 pathway. OTT 12:1365–1377. https://doi.org/10.2147/OTT.S192069

    Article  CAS  Google Scholar 

  190. Yang Y, Wang Y, Lai J et al (2016) Long non-coding RNA UCA 1 contributes to the progression of oral squamous cell carcinoma by regulating the WNT /β-catenin signaling pathway. Cancer Sci 107:1581–1589. https://doi.org/10.1111/cas.13058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhang S, Ma H, Zhang D et al (2018) LncRNA KCNQ1OT1 regulates proliferation and cisplatin resistance in tongue cancer via miR-211-5p mediated Ezrin/Fak/Src signaling. Cell Death Dis 9:742

    Article  PubMed  PubMed Central  Google Scholar 

  192. Bai R-L, Chen N-F, Li L-Y, Cui J-W (2021) A brand new era of cancer immunotherapy: breakthroughs and challenges. Chin Med J 134:1267–1275. https://doi.org/10.1097/CM9.0000000000001490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Pan X, Li C, Feng J (2023) The role of LncRNAs in tumor immunotherapy. Cancer Cell Int 23:30. https://doi.org/10.1186/s12935-023-02872-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Egranov SD, Hu Q, Lin C, Yang L (2020) LncRNAs as tumor cell intrinsic factors that affect cancer immunotherapy. RNA Biol 17:1625–1627. https://doi.org/10.1080/15476286.2020.1767455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Qu S, Jiao Z, Lu G et al (2021) PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity. Genome Biol 22:104. https://doi.org/10.1186/s13059-021-02331-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mineo M, Lyons SM, Zdioruk M et al (2020) Tumor interferon signaling is regulated by a lncRNA INCR1 transcribed from the PD-L1 locus. Mol Cell 78:1207-1223.e8. https://doi.org/10.1016/j.molcel.2020.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Li G, Kryczek I, Nam J et al (2021) LIMIT is an immunogenic lncRNA in cancer immunity and immunotherapy. Nat Cell Biol 23:526–537. https://doi.org/10.1038/s41556-021-00672-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hadjicharalambous L (2019) Long non-coding RNAs and the innate immune response. ncRNA 5:34. https://doi.org/10.3390/ncrna5020034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bocchetti M, Scrima M, Melisi F et al (2021) LncRNAs and immunity: coding the immune system with noncoding oligonucleotides. IJMS 22:1741. https://doi.org/10.3390/ijms22041741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Gomez JA, Wapinski OL, Yang YW et al (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152:743–754. https://doi.org/10.1016/j.cell.2013.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang P, Xue Y, Han Y et al (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344:310–313. https://doi.org/10.1126/science.1251456

    Article  ADS  CAS  PubMed  Google Scholar 

  202. Wells AC, Pobezinskaya EL, Pobezinsky LA (2020) Non-coding RNAs in CD8 T cell biology. Mol Immunol 120:67–73. https://doi.org/10.1016/j.molimm.2020.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhou Y, Zhu Y, Xie Y, Ma X (2019) The role of long non-coding RNAs in immunotherapy resistance. Front Oncol 9:1292. https://doi.org/10.3389/fonc.2019.01292

    Article  PubMed  PubMed Central  Google Scholar 

  204. Yu H, Zhang C, Li W et al (2021) Nano-coated si-SNHG14 regulated PD-L1 expression and decreased epithelial-mesenchymal transition in nasopharyngeal carcinoma cells. J Biomed Nanotechnol 17:1993–2002. https://doi.org/10.1166/jbn.2021.3162

    Article  CAS  PubMed  Google Scholar 

  205. Shi L, Yang Y, Li M et al (2022) LncRNA IFITM4P promotes immune escape by up-regulating PD-L1 via dual mechanism in oral carcinogenesis. Mol Ther 30:1564–1577. https://doi.org/10.1016/j.ymthe.2022.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Li C, Zhao W, Pan X et al (2020) LncRNA KTN1-AS1 promotes the progression of non-small cell lung cancer via sponging of miR-130a-5p and activation of PDPK1. Oncogene 39:6157–6171. https://doi.org/10.1038/s41388-020-01427-4

    Article  CAS  PubMed  Google Scholar 

  207. Song H, Liu Y, Li X et al (2020) Long noncoding RNA CASC11 promotes hepatocarcinogenesis and HCC progression through EIF4A3-mediated E2F1 activation. Clin Transl Med 10:e220. https://doi.org/10.1002/ctm2.220

    Article  PubMed  PubMed Central  Google Scholar 

  208. Peng L, Chen Y, Ou Q et al (2020) LncRNA MIAT correlates with immune infiltrates and drug reactions in hepatocellular carcinoma. Int Immunopharmacol 89:107071. https://doi.org/10.1016/j.intimp.2020.107071

    Article  CAS  PubMed  Google Scholar 

  209. Zhong F, Liu S, Hu D, Chen L (2022) LncRNA AC099850.3 promotes hepatocellular carcinoma proliferation and invasion through PRR11/PI3K/AKT axis and is associated with patients prognosis. J Cancer 13:1048–1060. https://doi.org/10.7150/jca.66092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Fan F, Chen K, Lu X et al (2021) Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma. Hepatol Int 15:444–458. https://doi.org/10.1007/s12072-020-10101-6

    Article  PubMed  Google Scholar 

  211. Zhang M, Wang N, Song P et al (2020) LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif. https://doi.org/10.1111/cpr.12855

    Article  PubMed  PubMed Central  Google Scholar 

  212. Zhang Y, Li Z, Chen M et al (2020) lncRNA TCL6 correlates with immune cell infiltration and indicates worse survival in breast cancer. Breast Cancer 27:573–585. https://doi.org/10.1007/s12282-020-01048-5

    Article  PubMed  Google Scholar 

  213. Hu Q, Ye Y, Chan L-C et al (2019) Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol 20:835–851. https://doi.org/10.1038/s41590-019-0400-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Peng L, Peng J-Y, Cai D-K et al (2022) Immune infiltration and clinical outcome of super-enhancer-associated lncRNAs in stomach adenocarcinoma. Front Oncol 12:780493. https://doi.org/10.3389/fonc.2022.780493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Xu J, Shao T, Song M et al (2020) MIR22HG acts as a tumor suppressor via TGFβ/SMAD signaling and facilitates immunotherapy in colorectal cancer. Mol Cancer 19:51. https://doi.org/10.1186/s12943-020-01174-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Xu J, Meng Q, Li X et al (2019) Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR-17-5p. Can Res 79:4882–4895. https://doi.org/10.1158/0008-5472.CAN-18-3880

    Article  CAS  Google Scholar 

  217. Liao C, Wang A, Ma Y, Liu H (2021) Long non-coding RNA FOXP4-AS1 is a prognostic biomarker and associated with immune infiltrates in ovarian serous cystadenocarcinoma. Medicine 100:e27473. https://doi.org/10.1097/MD.0000000000027473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Qin S, Xu L, Yi M et al (2019) Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer 18:155. https://doi.org/10.1186/s12943-019-1091-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Guo W, Wang Y, Yang M et al (2021) LincRNA-immunity landscape analysis identifies EPIC1 as a regulator of tumor immune evasion and immunotherapy resistance. Sci Adv 7:eabb3555. https://doi.org/10.1126/sciadv.abb3555

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  220. Xu S, Wang Q, Kang Y et al (2020) Long noncoding RNAs control the modulation of immune checkpoint molecules in cancer. Cancer Immunol Res 8:937–951

    Article  CAS  PubMed  Google Scholar 

  221. Arun G, Diermeier SD, Spector DL (2018) Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med 24:257–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Chehelgerdi M, Chehelgerdi M (2023) The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 22:106. https://doi.org/10.1186/s12943-023-01807-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zeni PF, Mraz M (2021) LncRNAs in adaptive immunity: role in physiological and pathological conditions. RNA Biol 18:619–632. https://doi.org/10.1080/15476286.2020.1838783

    Article  CAS  PubMed  Google Scholar 

  224. Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118

    Article  CAS  PubMed  Google Scholar 

  225. Beylerli O, Gareev I, Sufianov A et al (2022) Long noncoding RNAs as promising biomarkers in cancer. Non-coding RNA Res 7:66–70. https://doi.org/10.1016/j.ncrna.2022.02.004

    Article  CAS  Google Scholar 

  226. Arun G, Aggarwal D, Spector DL (2020) MALAT1 long Non-coding RNA: functional implications. ncRNA 6:22. https://doi.org/10.3390/ncrna6020022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ye D, Deng Y, Shen Z (2021) The role and mechanism of MALAT1 long non-coding RNA in the diagnosis and treatment of head and neck squamous cell carcinoma. OTT 14:4127–4136. https://doi.org/10.2147/OTT.S317234

    Article  Google Scholar 

  228. Qiao F-H, Tu M, Liu H-Y (2021) Role of MALAT1 in gynecological cancers: pathologic and therapeutic aspects (Review). Oncol Lett 21:333. https://doi.org/10.3892/ol.2021.12594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Mozdarani H, Ezzatizadeh V, Rahbar Parvaneh R (2020) The emerging role of the long non-coding RNA HOTAIR in breast cancer development and treatment. J Transl Med 18:152. https://doi.org/10.1186/s12967-020-02320-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Pawłowska E, Szczepanska J, Blasiak J (2017) The long noncoding RNA HOTAIR in breast cancer: does autophagy play a role? IJMS 18:2317. https://doi.org/10.3390/ijms18112317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Hajjari M, Salavaty A (2015) HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med 12:1

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Islam Khan MZ, Law HKW (2021) Cancer susceptibility candidate 9 (CASC9) promotes colorectal cancer carcinogenesis via mTOR-dependent autophagy and epithelial-mesenchymal transition pathways. Front Mol Biosci 8:627022. https://doi.org/10.3389/fmolb.2021.627022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Sharma U, Barwal TS, Acharya V et al (2020) Cancer susceptibility candidate 9 (CASC9): a novel targetable long noncoding RNA in cancer treatment. Transl Oncol 13:100774. https://doi.org/10.1016/j.tranon.2020.100774

    Article  PubMed  PubMed Central  Google Scholar 

  234. Qi Y, Song C, Zhang J et al (2021) Oncogenic LncRNA CASC9 in Cancer Progression. CPD 27:575–582. https://doi.org/10.2174/1381612826666200917150130

    Article  CAS  Google Scholar 

  235. Palmieri G, Paliogiannis P, Sini MC et al (2017) Long non-coding RNA CASC2 in human cancer. Crit Rev Oncol Hematol 111:31–38. https://doi.org/10.1016/j.critrevonc.2017.01.003

    Article  PubMed  Google Scholar 

  236. Yu X, Zheng H, Tse G et al (2018) CASC2: An emerging tumour-suppressing long noncoding RNA in human cancers and melanoma. Cell Prolif 51:e12506. https://doi.org/10.1111/cpr.12506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Ghafouri-Fard S, Dashti S, Taheri M (2020) The role of long non-coding RNA CASC2 in the carcinogenesis process. Biomed Pharmacother 127:110202. https://doi.org/10.1016/j.biopha.2020.110202

    Article  CAS  PubMed  Google Scholar 

  238. He Y, Luo Y, Liang B et al (2017) Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget 8:73282–73295. https://doi.org/10.18632/oncotarget.19931

    Article  PubMed  PubMed Central  Google Scholar 

  239. Al-Rugeebah A, Alanazi M, Parine NR (2019) MEG3: an oncogenic long non-coding RNA in different cancers. Pathol Oncol Res 25:859–874. https://doi.org/10.1007/s12253-019-00614-3

    Article  CAS  PubMed  Google Scholar 

  240. Jiang L, Wan Y, Feng Z et al (2021) Long noncoding RNA UCA1 is related to autophagy and apoptosis in endometrial stromal cells. Front Oncol 10:618472. https://doi.org/10.3389/fonc.2020.618472

    Article  PubMed  PubMed Central  Google Scholar 

  241. Hong H, Hou L, Pan X et al (2016) Long non-coding RNA UCA1 is a predictive biomarker of cancer. Oncotarget 7:44442–44447. https://doi.org/10.18632/oncotarget.10142

    Article  PubMed  PubMed Central  Google Scholar 

  242. Neve B, Jonckheere N, Vincent A, Van Seuningen I (2018) Epigenetic regulation by lncRNAs: an overview focused on UCA1 in colorectal cancer. Cancers 10:440. https://doi.org/10.3390/cancers10110440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Cagle P, Qi Q, Niture S, Kumar D (2021) KCNQ1OT1: an oncogenic long noncoding RNA. Biomolecules 11:1602. https://doi.org/10.3390/biom11111602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lin Z, Long P, Zhao Z et al (2021) Long noncoding RNA KCNQ1OT1 is a prognostic biomarker and mediates CD8 + T cell exhaustion by regulating CD155 expression in colorectal cancer. Int J Biol Sci 17:1757–1768. https://doi.org/10.7150/ijbs.59001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Xue J-Y, Huang C, Wang W et al (2018) HOXA11-AS: a novel regulator in human cancer proliferation and metastasis. OTT 11:4387–4393. https://doi.org/10.2147/OTT.S166961

    Article  Google Scholar 

  246. Li N, Yang M, Shi K, Li W (2017) Long non-coding RNA HOXA11-AS in human cancer: a meta-analysis. Clin Chim Acta 474:165–170. https://doi.org/10.1016/j.cca.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  247. Yang J, Qi M, Fei X et al (2021) Long non-coding RNA XIST: a novel oncogene in multiple cancers. Mol Med 27:1–19

    Article  CAS  Google Scholar 

  248. Zong Y, Zhang Y, Hou D et al (2020) The lncRNA XIST promotes the progression of breast cancer by sponging miR-125b-5p to modulate NLRC5. Am J Transl Res 12:3501–3511

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Kong Y, Hsieh C-H, Alonso LC (2018) ANRIL: a lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease. Front Endocrinol 9:405. https://doi.org/10.3389/fendo.2018.00405

    Article  Google Scholar 

  250. Aguilo F, Di Cecilia S, Walsh MJ (2015) Long non-coding RNA ANRIL and polycomb in human cancers and cardiovascular disease. In: Morris KV (ed) Long non-coding RNAs in human disease. Springer, Cham, pp 29–39

    Chapter  Google Scholar 

  251. Kaur J, Salehen N, Norazit A et al (2022) Tumor suppressive effects of GAS5 in cancer cells. ncRNA 8:39. https://doi.org/10.3390/ncrna8030039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ji J, Dai X, Yeung S-CJ, He X (2019) The role of long non-coding RNA GAS5 in cancers. CMAR 11:2729–2737. https://doi.org/10.2147/CMAR.S189052

    Article  CAS  Google Scholar 

  253. Lin G, Wu T, Gao X et al (2022) Research progress of long non-coding RNA GAS5 in malignant tumors. Front Oncol 12:846497. https://doi.org/10.3389/fonc.2022.846497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Wang S, Wang Y, Zhang Z et al (2021) Long non-coding RNA NRON promotes tumor proliferation by regulating ALKBH5 and nanog in gastric cancer. J Cancer 12:6861–6872. https://doi.org/10.7150/jca.60737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Xiong T, Huang C, Li J et al (2020) LncRNA NRON promotes the proliferation, metastasis and EMT process in bladder cancer. J Cancer 11:1751–1760. https://doi.org/10.7150/jca.37958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Cai H, Zheng Y, Wen Z et al (2021) LncRNA AIRN influences the proliferation and apoptosis of hepatocellular carcinoma cells by regulating STAT1 ubiquitination. Arch Pharm Res 44:414–426. https://doi.org/10.1007/s12272-021-01317-7

    Article  CAS  PubMed  Google Scholar 

  257. Li Liu LL, Dehong Yu DY, Hong Shi HS et al (2017) Reduced lncRNA Aim enhances the malignant invasion of triple-negative breast cancer cells mainly by activating Wnt/β-catenin/mTOR/PI3K signaling. Pharmazie. https://doi.org/10.1691/ph.2017.7547

    Article  PubMed  Google Scholar 

  258. Yu X, Zheng H, Chan MTV, Wu WKK (2017) HULC: an oncogenic long non-coding RNA in human cancer. J Cell Mol Med 21:410–417. https://doi.org/10.1111/jcmm.12956

    Article  CAS  PubMed  Google Scholar 

  259. Xin X, Wu M, Meng Q et al (2018) Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a. Mol Cancer 17:94. https://doi.org/10.1186/s12943-018-0843-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Ye Y, Shen A, Liu A (2019) Long non-coding RNA H19 and cancer: a competing endogenous RNA. Bull Cancer 106:1152–1159. https://doi.org/10.1016/j.bulcan.2019.08.011

    Article  PubMed  Google Scholar 

  261. Ghafouri-Fard S, Esmaeili M, Taheri M (2020) H19 lncRNA: roles in tumorigenesis. Biomed Pharmacother 123:109774. https://doi.org/10.1016/j.biopha.2019.109774

    Article  CAS  PubMed  Google Scholar 

  262. Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 Long non-coding RNA in cancer initiation, progression and metastasis – a proposed unifying theory. Mol Cancer 14:184. https://doi.org/10.1186/s12943-015-0458-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Liau XL, Salvamani S, Gunasekaran B et al (2023) CCAT 1- a pivotal oncogenic long non-coding RNA in colorectal cancer. Br J Biomed Sci 80:11103. https://doi.org/10.3389/bjbs.2023.11103

    Article  PubMed  PubMed Central  Google Scholar 

  264. Liu Z, Chen Q, Hann SS (2019) The functions and oncogenic roles of CCAT1 in human cancer. Biomed Pharmacother 115:108943. https://doi.org/10.1016/j.biopha.2019.108943

    Article  CAS  PubMed  Google Scholar 

  265. Wang W, Zhou R, Wu Y et al (2019) PVT1 promotes cancer progression via MicroRNAs. Front Oncol 9:609. https://doi.org/10.3389/fonc.2019.00609

    Article  PubMed  PubMed Central  Google Scholar 

  266. Cui M, You L, Ren X et al (2016) Long non-coding RNA PVT1 and cancer. Biochem Biophys Res Commun 471:10–14. https://doi.org/10.1016/j.bbrc.2015.12.101

    Article  CAS  PubMed  Google Scholar 

  267. Thin KZ, Liu X, Feng X et al (2018) LncRNA-DANCR: a valuable cancer related long non-coding RNA for human cancers. Pathol Res Pract 214:801–805. https://doi.org/10.1016/j.prp.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  268. Jin S-J, Jin M-Z, Xia B-R, Jin W-L (2019) Long non-coding RNA DANCR as an emerging therapeutic target in human cancers. Front Oncol 9:1225. https://doi.org/10.3389/fonc.2019.01225

    Article  PubMed  PubMed Central  Google Scholar 

  269. Li S, Li J, Chen C et al (2018) Pan-cancer analysis of long non-coding RNA NEAT1 in various cancers. Genes Dis 5:27–35. https://doi.org/10.1016/j.gendis.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  270. Dong P, Xiong Y, Yue J et al (2018) Long non-coding RNA NEAT1: a novel target for diagnosis and therapy in human tumors. Front Genet 9:471. https://doi.org/10.3389/fgene.2018.00471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Wu C, Wang Z, Tian X et al (2021) Long non-coding RNA DDX11-AS1 promotes esophageal carcinoma cell proliferation and migration through regulating the miR-514b-3p/RBX1 axis. Bioengineered 12:3772–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Shi W, Gao Z, Song J, Wang W (2020) Silence of FOXD2-AS1 inhibited the proliferation and invasion of esophagus cells by regulating miR-145–5p/CDK6 axis. Histol Histopathol 35: 1013–1021. https://doi.org/10.14670/HH-18-232

  273. Li F, Zhou X, Chen M, Fan W (2020) Regulatory effect of LncRNA DRAIC/miR-149-5p/NFIB molecular network on autophagy of esophageal cancer cells and its biological behavior. Exp Mol Pathol 116:104491. https://doi.org/10.1016/j.yexmp.2020.104491

    Article  CAS  PubMed  Google Scholar 

  274. Wang G, Feng B, Niu Y et al (2020) A novel long noncoding RNA, LOC440173, promotes the progression of esophageal squamous cell carcinoma by modulating the miR-30d-5p/HDAC9 axis and the epithelial–mesenchymal transition. Mol Carcinog 59:1392–1408. https://doi.org/10.1002/mc.23264

    Article  CAS  PubMed  Google Scholar 

  275. Wang P, Liu X, Han G et al (2019) Downregulated lncRNA UCA1 acts as ceRNA to adsorb microRNA-498 to repress proliferation, invasion and epithelial mesenchymal transition of esophageal cancer cells by decreasing ZEB2 expression. Cell Cycle 18:2359–2376. https://doi.org/10.1080/15384101.2019.1648959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Wang Z, Huang Y-F, Yu L, Jiao Y (2022) sh-HNF1A-AS1 reduces the epithelial-mesenchymal transition and stemness of esophageal cancer cells. Neoplasma 69:560–570. https://doi.org/10.4149/neo_2022_211102N1555

    Article  CAS  PubMed  Google Scholar 

  277. Wei W, Wang L, Liang J et al (2020) LncRNA EIF3J-AS1 enhanced esophageal cancer invasion via regulating AKT1 expression through sponging miR-373-3p. Sci Rep 10:13969. https://doi.org/10.1038/s41598-020-70886-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Feng Z, Li X, Qiu M et al (2020) LncRNA EGFR-AS1 upregulates ROCK1 by sponging miR-145 to promote esophageal squamous cell carcinoma cell invasion and migration. Cancer Biother Radiopharm 35:66–71. https://doi.org/10.1089/cbr.2019.2926

    Article  CAS  PubMed  Google Scholar 

  279. Li Y, Chen D, Gao X et al (2017) LncRNA NEAT1 regulates cell viability and invasion in esophageal squamous cell carcinoma through the miR-129/CTBP2 axis. Dis Markers 2017:1–11. https://doi.org/10.1155/2017/5314649

    Article  CAS  Google Scholar 

  280. Zhang Z, Liang X, Ren L et al (2020) LINC00662 promotes cell viability and metastasis in esophageal squamous cell carcinoma by sponging miR -340-5p and upregulating HOXB2. Thorac Cancer 11:2306–2315. https://doi.org/10.1111/1759-7714.13551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Li Q, Dai Z, Xia C et al (2020) Suppression of long non-coding RNA MALAT1 inhibits survival and metastasis of esophagus cancer cells by sponging miR-1-3p/CORO1C/TPM3 axis. Mol Cell Biochem 470:165–174. https://doi.org/10.1007/s11010-020-03759-x

    Article  CAS  PubMed  Google Scholar 

  282. Li Z, Qin X, Bian W et al (2019) Exosomal lncRNA ZFAS1 regulates esophageal squamous cell carcinoma cell proliferation, invasion, migration and apoptosis via microRNA-124/STAT3 axis. J Exp Clin Cancer Res 38:477. https://doi.org/10.1186/s13046-019-1473-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Gao H, Wang T, Zhang P et al (2020) Linc-ROR regulates apoptosis in esophageal squamous cell carcinoma via modulation of p53 ubiquitination by targeting miR-204-5p/MDM2. J Cell Physiol 235:2325–2335. https://doi.org/10.1002/jcp.29139

    Article  CAS  PubMed  Google Scholar 

  284. Jia Y, Tian C, Wang H et al (2021) Long non-coding RNA NORAD/miR-224-3p/MTDH axis contributes to CDDP resistance of esophageal squamous cell carcinoma by promoting nuclear accumulation of β-catenin. Mol Cancer 20:162. https://doi.org/10.1186/s12943-021-01455-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Liu H, Zhang J, Luo X et al (2020) Overexpression of the long noncoding RNA FOXD2-AS1 promotes cisplatin resistance in esophageal squamous cell carcinoma through the miR-195/Akt/mTOR axis. Oncol Res 28:65–73. https://doi.org/10.3727/096504019X15656904013079

    Article  PubMed  PubMed Central  Google Scholar 

  286. Hu M, Zhang Q, Tian X et al (2019) lncRNA CCAT1 is a biomarker for the proliferation and drug resistance of esophageal cancer via the miR-143/PLK1/BUBR1 axis. Mol Carcinog 58:2207–2217. https://doi.org/10.1002/mc.23109

    Article  CAS  PubMed  Google Scholar 

  287. Zhu Z-J, Pang Y, Jin G et al (2021) Hypoxia induces chemoresistance of esophageal cancer cells to cisplatin through regulating the lncRNA-EMS/miR-758–3p/WTAP axis. Aging 13:17155–17176. https://doi.org/10.18632/aging.203062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Wang Q, Li G, Ma X et al (2023) LncRNA TINCR impairs the efficacy of immunotherapy against breast cancer by recruiting DNMT1 and downregulating MiR-199a-5p via the STAT1–TINCR-USP20-PD-L1 axis. Cell Death Dis 14:76. https://doi.org/10.1038/s41419-023-05609-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Shang A, Wang W, Gu C et al (2019) Long non-coding RNA HOTTIP enhances IL-6 expression to potentiate immune escape of ovarian cancer cells by upregulating the expression of PD-L1 in neutrophils. J Exp Clin Cancer Res 38:411. https://doi.org/10.1186/s13046-019-1394-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Duan M, Fang M, Wang C et al (2020) LncRNA EMX2OS induces proliferation, invasion and sphere formation of ovarian cancer cells via regulating the miR-654-3p/AKT3/PD-L1 axis. CMAR 12:2141–2154. https://doi.org/10.2147/CMAR.S229013

    Article  CAS  Google Scholar 

  291. Li H, Xiong H-G, Xiao Y et al (2020) Long non-coding RNA LINC02195 as a regulator of MHC I molecules and favorable prognostic marker for head and neck squamous cell carcinoma. Front Oncol 10:615. https://doi.org/10.3389/fonc.2020.00615

    Article  PubMed  PubMed Central  Google Scholar 

  292. Zhou W, Zhang M, Liu C et al (2019) Long noncoding RNA LINC00473 drives the progression of pancreatic cancer via upregulating programmed death-ligand 1 by sponging microRNA-195-5p. J Cell Physiol 234:23176–23189. https://doi.org/10.1002/jcp.28884

    Article  CAS  PubMed  Google Scholar 

  293. Kathuria H, Millien G, McNally L et al (2018) NKX2-1-AS1 negatively regulates CD274/PD-L1, cell-cell interaction genes, and limits human lung carcinoma cell migration. Sci Rep 8:14418. https://doi.org/10.1038/s41598-018-32793-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  294. Wang Q-M, Lian G-Y, Song Y et al (2019) LncRNA MALAT1 promotes tumorigenesis and immune escape of diffuse large B cell lymphoma by sponging miR-195. Life Sci 231:116335. https://doi.org/10.1016/j.lfs.2019.03.040

    Article  CAS  PubMed  Google Scholar 

  295. Yao Y, Jiang Q, Jiang L et al (2016) Lnc-SGK1 induced by Helicobacter pylori infection and highsalt diet promote Th2 and Th17 differentiation in human gastric cancer by SGK1/Jun B signaling. Oncotarget 7:20549–20560. https://doi.org/10.18632/oncotarget.7823

    Article  PubMed  PubMed Central  Google Scholar 

  296. Xiong G, Yang L, Chen Y, Fan Z (2015) Linc-POU3F3 promotes cell proliferation in gastric cancer via increasing T-reg distribution. Am J Transl Res 7:2262–2269

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Sun C-C, Zhu W, Li S-J et al (2020) FOXC1-mediated LINC00301 facilitates tumor progression and triggers an immune-suppressing microenvironment in non-small cell lung cancer by regulating the HIF1α pathway. Genome Med 12:77. https://doi.org/10.1186/s13073-020-00773-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Ji J, Yin Y, Ju H et al (2018) Long non-coding RNA Lnc-Tim3 exacerbates CD8 T cell exhaustion via binding to Tim-3 and inducing nuclear translocation of Bat3 in HCC. Cell Death Dis 9:478. https://doi.org/10.1038/s41419-018-0528-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Yan K, Fu Y, Zhu N et al (2019) Repression of lncRNA NEAT1 enhances the antitumor activity of CD8+T cells against hepatocellular carcinoma via regulating miR-155/Tim-3. Int J Biochem Cell Biol 110:1–8. https://doi.org/10.1016/j.biocel.2019.01.019

    Article  CAS  PubMed  Google Scholar 

  300. Huang D, Chen J, Yang L et al (2018) NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat Immunol 19:1112–1125. https://doi.org/10.1038/s41590-018-0207-y

    Article  CAS  PubMed  Google Scholar 

  301. Pei X, Wang X, Li H (2018) LncRNA SNHG1 regulates the differentiation of Treg cells and affects the immune escape of breast cancer via regulating miR-448/IDO. Int J Biol Macromol 118:24–30. https://doi.org/10.1016/j.ijbiomac.2018.06.033

    Article  CAS  PubMed  Google Scholar 

  302. Ni C, Fang Q-Q, Chen W-Z et al (2020) Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+γδ1 Treg cells. Sig Transduct Target Ther 5:41. https://doi.org/10.1038/s41392-020-0129-7

    Article  CAS  Google Scholar 

  303. Jiang R, Tang J, Chen Y et al (2017) The long noncoding RNA lnc-EGFR stimulates T-regulatory cells differentiation thus promoting hepatocellular carcinoma immune evasion. Nat Commun 8:15129. https://doi.org/10.1038/ncomms15129

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  304. Li Z, Feng C, Guo J et al (2020) GNAS-AS1/miR-4319/NECAB3 axis promotes migration and invasion of non-small cell lung cancer cells by altering macrophage polarization. Funct Integr Genomics 20:17–28. https://doi.org/10.1007/s10142-019-00696-x

    Article  CAS  PubMed  Google Scholar 

  305. Zhou Y, Zhao W, Mao L et al (2018) Long non-coding RNA NIFK-AS1 inhibits M2 polarization of macrophages in endometrial cancer through targeting miR-146a. Int J Biochem Cell Biol 104:25–33. https://doi.org/10.1016/j.biocel.2018.08.017

    Article  CAS  PubMed  Google Scholar 

  306. Liu J, Zhang X, Chen K et al (2019) CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 50:600-615.e15. https://doi.org/10.1016/j.immuni.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  307. Wei S, Wang K, Huang X et al (2019) LncRNA MALAT1 contributes to non-small cell lung cancer progression via modulating miR-200a-3p/programmed death-ligand 1 axis. Int J Immunopathol Pharmacol 33:205873841985969. https://doi.org/10.1177/2058738419859699

    Article  CAS  Google Scholar 

  308. Zhao L, Liu Y, Zhang J et al (2019) LncRNA SNHG14/miR-5590-3p/ZEB1 positive feedback loop promoted diffuse large B cell lymphoma progression and immune evasion through regulating PD-1/PD-L1 checkpoint. Cell Death Dis 10:731. https://doi.org/10.1038/s41419-019-1886-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Xu D, Dong P, Xiong Y et al (2020) PD-L1 Is a tumor suppressor in aggressive endometrial cancer cells and its expression is regulated by miR-216a and lncRNA MEG3. Front Cell Dev Biol 8:598205. https://doi.org/10.3389/fcell.2020.598205

    Article  PubMed  PubMed Central  Google Scholar 

  310. Dang S, Malik A, Chen J et al (2020) LncRNA SNHG15 contributes to immuno-escape of gastric cancer through targeting miR141/PD-L1. OTT 13:8547–8556. https://doi.org/10.2147/OTT.S251625

    Article  CAS  Google Scholar 

  311. Wang J, Yu Z, Wang J et al (2020) LncRNA NUTM2A-AS1 positively modulates TET1 and HIF-1A to enhance gastric cancer tumorigenesis and drug resistance by sponging miR-376a. Cancer Med 9:9499–9510. https://doi.org/10.1002/cam4.3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Mu L, Wang Y, Su H et al (2021) HIF1A-AS2 promotes the proliferation and metastasis of gastric cancer cells through miR-429/PD-L1 axis. Dig Dis Sci 66:4314–4325. https://doi.org/10.1007/s10620-020-06819-w

    Article  CAS  PubMed  Google Scholar 

  313. Zhang W, Shi X, Chen R et al (2020) Novel long non-coding RNA lncAMPC promotes metastasis and immunosuppression in prostate cancer by stimulating LIF/LIFR expression. Mol Ther 28:2473–2487. https://doi.org/10.1016/j.ymthe.2020.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Chen Q-H, Li B, Liu D-G et al (2020) LncRNA KCNQ1OT1 sponges miR-15a to promote immune evasion and malignant progression of prostate cancer via up-regulating PD-L1. Cancer Cell Int 20:394. https://doi.org/10.1186/s12935-020-01481-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Wang X, Zhang Y, Zheng J et al (2021) LncRNA UCA1 attenuated the killing effect of cytotoxic CD8 + T cells on anaplastic thyroid carcinoma via miR-148a/PD-L1 pathway. Cancer Immunol Immunother 70:2235–2245. https://doi.org/10.1007/s00262-020-02753-y

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by Lokesh K Kadian and all authors commented on the previous versions of the manuscript. The final manuscript was designed and prepared by Lokesh K Kadian, Deepika Verma, Neelam Lohani, and Shyam S Chauhan. Shalu Ranga and Ritu Yadav helped in drawing the table. Gulshan Gulshan and Sanghapriya Pal helped in reviewing and editing the manuscript. Kiran Kumari helped in the figure for manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Shyam S. Chauhan.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadian, L.K., Verma, D., Lohani, N. et al. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-04933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-04933-1

Keywords

Navigation