Skip to main content

Advertisement

Log in

Superoxide dismutase: a key target for the neuroprotective effects of curcumin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Over the past few years, the prevalence of neurodegenerative diseases (NDD) has increased dramatically. The community health system is burdened by the high healthcare costs associated with NDD. Superoxide dismutase (SOD) is a type of metalloenzyme that possesses a distinct characteristic of protecting the body from oxidative stress through antioxidants. In this way, SOD supplementation may activate the endogenous antioxidant mechanism in various pathological conditions and could be used to neutralize free radical excess. Several factors are responsible for damaging DNA and RNA in the body, including the overproduction of reactive species, particularly reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive ROS/RNS have deleterious effects on mitochondria and their metabolic processes, mainly through increased mitochondrial proteins, lipids and DNA oxidation. Studies have shown that oxidative stress is implicated in the etiology of many diseases, including NDD. It is thought that anti-inflammatory compounds, particularly phytochemicals, can interfere with these pathways and regulate inflammation. Extensive experimental and clinical research has proven that curcumin (Cur) has anti-inflammatory and anti-neurologic properties. In this review, we have compiled the available data on Cur’s anti-inflammatory properties, paying special attention to its therapeutic impact on NDD through SOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

There is no raw data associated with this review article.

References

  1. Amor S, Puentes F, Baker D, Van Der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    Article  CAS  PubMed  Google Scholar 

  3. Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763(7):747–758. https://doi.org/10.1016/j.bbamcr.2006.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antonyuk SV, Strange RW, Marklund SL, Hasnain SS (2009) The structure of human extracellular copper-zinc superoxide dismutase at 17 A resolution: insights into heparin and collagen binding. J Mol Biol 388(2):310–326. https://doi.org/10.1016/j.jmb.2009.03.026

    Article  CAS  PubMed  Google Scholar 

  5. Blackney MJ, Cox R, Shepherd D, Parker JD (2014) Cloning and expression analysis of drosophila extracellular Cu Zn superoxide dismutase. Biosci Rep 34(6):e00164. https://doi.org/10.1042/bsr20140133

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhao JS, Jin HX, Gao JL, Pu C, Zhang P, Huang JJ, Cheng L, Feng G (2018) Serum extracellular superoxide dismutase is associated with diabetic retinopathy stage in Chinese patients with type 2 diabetes mellitus. Dis Markers 2018:8721379. https://doi.org/10.1155/2018/8721379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62. https://doi.org/10.1038/362059a0

    Article  CAS  PubMed  Google Scholar 

  8. Park JH, Elpers C, Reunert J, McCormick ML, Mohr J, Biskup S, Schwartz O, Rust S, Grüneberg M, Seelhöfer A, Schara U, Boltshauser E, Spitz DR, Marquardt T (2019) SOD1 deficiency: a novel syndrome distinct from amyotrophic lateral sclerosis. Brain 142(8):2230–2237. https://doi.org/10.1093/brain/awz182

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yadav DK (2021) Potential therapeutic strategies of phytochemicals in neurodegenerative disorders. Curr Top Med Chem 21(31):2814–2838. https://doi.org/10.2174/1568026621666211201150217

    Article  CAS  PubMed  Google Scholar 

  10. Ayaz M, Nawaz A, Naz F, Ullah F, Sadiq A, Islam ZU (2022) Phytochemicals-based therapeutics against alzheimer’s disease: an update. Curr Top Med Chem 22(22):1811–1820. https://doi.org/10.2174/1568026622666220815104305

    Article  CAS  PubMed  Google Scholar 

  11. Hosseini SA, Zahedipour F, Sathyapalan T, Jamialahmadi T, Sahebkar A (2021) Pulmonary fibrosis: therapeutic and mechanistic insights into the role of phytochemicals. BioFactors 47(3):250–269. https://doi.org/10.1002/biof.1713

    Article  CAS  PubMed  Google Scholar 

  12. Zahedipour F, Hosseini S, Henney N, Barreto G, Sahebkar A (2022) Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen Res 17(8):1675–1684. https://doi.org/10.4103/1673-5374.332128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahmadi A, Jamialahmadi T, Sahebkar A (2022) Polyphenols and atherosclerosis: a critical review of clinical effects on LDL oxidation. Pharmacol Res. https://doi.org/10.1016/j.phrs.2022.106414

    Article  PubMed  Google Scholar 

  14. Enayati A, Banach M, Jamialahmadi T, Sahebkar A (2022) Protective role of nutraceuticals against myocarditis. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2021.112242

    Article  PubMed  Google Scholar 

  15. Afshari AR, Mollazadeh H, Mohtashami E, Soltani A, Soukhtanloo M, Hosseini A, Jalili-Nik M, Vahedi MM, Roshan MK, Sahebkar A (2021) Protective role of natural products in glioblastoma multiforme: a focus on nitric oxide pathway. Curr Med Chem 28(2):377–400. https://doi.org/10.2174/0929867327666200130104757

    Article  CAS  PubMed  Google Scholar 

  16. Bagherniya M, Johnston TP, Sahebkar A (2021) Regulation of apolipoprotein b by natural products and nutraceuti-cals: a comprehensive review. Curr Med Chem 28(7):1363–1406. https://doi.org/10.2174/0929867327666200427092114

    Article  CAS  PubMed  Google Scholar 

  17. Hosseini A, Penson PE, Cicero AFG, Golledge J, Al-Rasadi K, Jamialahmadi T, Sahebkar A (2021) Potential benefits of phytochemicals for abdominal aortic aneurysm. Curr Med Chem 28(41):8595–8607. https://doi.org/10.2174/0929867328666210614113116

    Article  CAS  PubMed  Google Scholar 

  18. Velmurugan BK, Rathinasamy B, Lohanathan BP, Thiyagarajan V, Weng C-F (2018) Neuroprotective role of phytochemicals. Molecules 23(10):2485

    Article  PubMed  PubMed Central  Google Scholar 

  19. Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Nur H, Ismail AF, Sharif S, RamaKrishna S, Berto F (2020) Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 9(12):1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pivari F, Mingione A, Piazzini G, Ceccarani C, Ottaviano E, Brasacchio C, DeiCas M, Vischi M, Cozzolino MG, Fogagnolo P, Riva A, Petrangolini G, Barrea L, Di Renzo L, Borghi E, Signorelli P, Paroni R, Soldati L (2022) Curcumin supplementation (Meriva(®)) modulates inflammation, lipid peroxidation and gut microbiota composition in chronic kidney disease. Nutrients. https://doi.org/10.3390/nu14010231

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mohajeri M, Sahebkar A (2018) Protective effects of curcumin against doxorubicin-induced toxicity and resistance: a review. Crit Rev Oncol Hematol 122:30–51. https://doi.org/10.1016/j.critrevonc.2017.12.005

    Article  PubMed  Google Scholar 

  22. Mokhtari-Zaer A, Marefati N, Atkin SL, Butler AE, Sahebkar A (2018) The protective role of curcumin in myocardial ischemia–reperfusion injury. J Cell Physiol 234(1):214–222. https://doi.org/10.1002/jcp.26848

    Article  CAS  PubMed  Google Scholar 

  23. Parsamanesh N, Moossavi M, Bahrami A, Butler AE, Sahebkar A (2018) Therapeutic potential of curcumin in diabetic complications. Pharmacol Res 136:181–193. https://doi.org/10.1016/j.phrs.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  24. Ganji A, Farahani I, Saeedifar AM, Mosayebi G, Ghazavi A, Majeed M, Jamialahmadi T, Sahebkar A (2021) Protective effects of curcumin against lipopolysaccharide-induced toxicity. Curr Med Chem 28(33):6915–6930. https://doi.org/10.2174/0929867328666210525124707

    Article  CAS  PubMed  Google Scholar 

  25. Heidari Z, Daei M, Boozari M, Jamialahmadi T, Sahebkar A (2022) Curcumin supplementation in pediatric patients: a systematic review of current clinical evidence. Phytother Res 36(4):1442–1458. https://doi.org/10.1002/ptr.7350

    Article  CAS  PubMed  Google Scholar 

  26. Khayatan D, Razavi SM, Arab ZN, Niknejad AH, Nouri K, Momtaz S, Gumpricht E, Jamialahmadi T, Abdolghaffari AH, Barreto GE, Sahebkar A (2022) Protective effects of curcumin against traumatic brain injury. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2022.113621

    Article  PubMed  Google Scholar 

  27. Yuan J, Botchway BO, Zhang Y, Tan X, Wang X, Liu X (2019) Curcumin can improve spinal cord injury by inhibiting TGF-β-SOX9 signaling pathway. Cell Mol Neurobiol 39(5):569–575

    Article  CAS  PubMed  Google Scholar 

  28. Mohiti-Ardekani J, Asadi S, Ardakani AM, Rahimifard M, Baeeri M, Momtaz S (2019) Curcumin increases insulin sensitivity in C2C12 muscle cells via AKT and AMPK signaling pathways. Cogent Food & Agriculture 5(1):1577532

    Article  Google Scholar 

  29. Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A (2020) Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors 46(1):5–20. https://doi.org/10.1002/biof.1566

    Article  CAS  PubMed  Google Scholar 

  30. Ghasemi F, Bagheri H, Barreto GE, Read MI, Sahebkar A (2019) Effects of curcumin on microglial cells. Neurotox Res 36(1):12–26. https://doi.org/10.1007/s12640-019-00030-0

    Article  CAS  PubMed  Google Scholar 

  31. Mohseni M, Sahebkar A, Askari G, Johnston TP, Alikiaii B, Bagherniya M (2021) The clinical use of curcumin on neurological disorders: an updated systematic review of clinical trials. Phytother Res 35(12):6862–6882. https://doi.org/10.1002/ptr.7273

    Article  CAS  PubMed  Google Scholar 

  32. Sabouni N, Marzouni HZ, Palizban S, Meidaninikjeh S, Kesharwani P, Jamialahmadi T, Sahebkar A (2023) Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J Drug Target 31(3):243–260. https://doi.org/10.1080/1061186X.2022.2141755

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Liu Z, Wu J, Bai B, Chen H, Xiao Z, Chen L, Zhao Y, Lum H, Wang Y, Zhang H, Liang G (2018) New MD2 inhibitors derived from curcumin with improved anti-inflammatory activity. Eur J Med Chem 148:291–305. https://doi.org/10.1016/j.ejmech.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  34. Frey RS, Malik AB (2004) Oxidant signaling in lung cells. Am J Physiol Lung Cell Mol Physiol 286(1):L1-3. https://doi.org/10.1152/ajplung.00337.2003

    Article  CAS  PubMed  Google Scholar 

  35. Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P (2020) Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 60(6):887–939. https://doi.org/10.1080/10408398.2018.1552244

    Article  CAS  PubMed  Google Scholar 

  36. Li HY, Yang M, Li Z, Meng Z (2017) Curcumin inhibits angiotensin II-induced inflammation and proliferation of rat vascular smooth muscle cells by elevating PPAR-γ activity and reducing oxidative stress. Int J Mol Med 39(5):1307–1316. https://doi.org/10.3892/ijmm.2017.2924

    Article  CAS  PubMed  Google Scholar 

  37. Panchatcharam M, Miriyala S, Gayathri VS, Suguna L (2006) Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem 290(1–2):87–96. https://doi.org/10.1007/s11010-006-9170-2

    Article  CAS  PubMed  Google Scholar 

  38. Matés JM, Segura JA, Alonso FJ, Márquez J (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic Biol Med 49(9):1328–1341. https://doi.org/10.1016/j.freeradbiomed.2010.07.028

    Article  CAS  PubMed  Google Scholar 

  39. Gasmi A, Noor S, Piscopo S, Menzel A (2022) Toxic metal -mediated neurodegradation: a focus on glutathione and GST gene variants. Arch Razi Inst 77(2):525–536. https://doi.org/10.22092/ari.2021.356279.1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mishra S, Mishra M, Seth P, Sharma SK (2011) Tetrahydrocurcumin confers protection against amyloid β-induced toxicity. NeuroReport 22(1):23–27. https://doi.org/10.1097/WNR.0b013e328341e141

    Article  CAS  PubMed  Google Scholar 

  41. Liu Z, Yu Y, Li X, Ross CA, Smith WW (2011) Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol Res 63(5):439–444. https://doi.org/10.1016/j.phrs.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  42. Wang MS, Boddapati S, Emadi S, Sierks MR (2010) Curcumin reduces alpha-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci 11:57. https://doi.org/10.1186/1471-2202-11-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hassanzadeh S, Read MI, Bland AR, Majeed M, Jamialahmadi T, Sahebkar A (2020) Curcumin: an inflammasome silencer. Pharmacol Res. https://doi.org/10.1016/j.phrs.2020.104921

    Article  Google Scholar 

  44. Momtazi-Borojeni AA, Haftcheshmeh SM, Esmaeili SA, Johnston TP, Abdollahi E, Sahebkar A (2018) Curcumin: a natural modulator of immune cells in systemic lupus erythematosus. Autoimmun Rev 17(2):125–135. https://doi.org/10.1016/j.autrev.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  45. Baj T, Seth R (2018) Role of curcumin in regulation of TNF-α mediated brain inflammatory responses. Recent Pat Inflamm Allergy Drug Disc 12(1):69–77

    Article  CAS  Google Scholar 

  46. Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L (2021) Novel therapeutic delivery of nanocurcumin in central nervous system related disorders. Nanomaterials 11(1):2

    Article  CAS  Google Scholar 

  47. Rabanel J-M, Faivre J, Paka GD, Ramassamy C, Hildgen P, Banquy X (2015) Effect of polymer architecture on curcumin encapsulation and release from PEGylated polymer nanoparticles: toward a drug delivery nano-platform to the CNS. Eur J Pharm Biopharm 96:409–420

    Article  CAS  PubMed  Google Scholar 

  48. Dibaei M, Rouini M-R, Sheikholeslami B, Gholami M, Dinarvand R (2019) The effect of surface treatment on the brain delivery of curcumin nanosuspension: in vitro and in vivo studies. Int J Nanomed 14:5477

    Article  CAS  Google Scholar 

  49. Bonaccorso A, Gigliobianco MR, Pellitteri R, Santonocito D, Carbone C, Di Martino P, Puglisi G, Musumeci T (2020) Optimization of curcumin nanocrystals as promising strategy for nose-to-brain delivery application. Pharmaceutics 12(5):476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mahajan HS, Patil ND (2021) Nanoemulsion containing a synergistic combination of curcumin and quercetin for nose-to-brain delivery: In vitro and in vivo studies. Asian Pac J Trop Biomed 11(11):510

    Article  CAS  Google Scholar 

  51. Vaz GR, Clementino A, Bidone J, Villetti MA, Falkembach M, Batista M, Barros P, Sonvico F, Dora C (2020) Curcumin and quercetin-loaded nanoemulsions: physicochemical compatibility study and validation of a simultaneous quantification method. Nanomaterials 10(9):1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yavarpour-Bali H, Ghasemi-Kasman M, Pirzadeh M (2019) Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int J Nanomed 14:4449

    Article  CAS  Google Scholar 

  53. Yan Y, Chen Y, Liu Z, Cai F, Niu W, Song L, Liang H, Su Z, Yu B, Yan F (2021) Brain delivery of curcumin through low-intensity ultrasound-induced blood-brain barrier opening via Lipid-PLGA nanobubbles. Int J Nanomed 16:7433

    Article  CAS  Google Scholar 

  54. Goldman JS, Hahn SE, Catania JW, LaRusse-Eckert S, Butson MB, Rumbaugh M, Strecker MN, Roberts JS, Burke W, Mayeux R, Bird T (2011) Genetic counseling and testing for Alzheimer disease: joint practice guidelines of the American college of medical genetics and the National Society of genetic counselors. Genet in med 13(6):597–605. https://doi.org/10.1097/GIM.0b013e31821d69b8

    Article  Google Scholar 

  55. Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP, Shirendeb U (2010) Amyloid-beta and mitochondria in aging and Alzheimer’s disease: implications for synaptic damage and cognitive decline. J Alzheimer’s dis 20(Suppl 2):S499-512. https://doi.org/10.3233/jad-2010-100504

    Article  Google Scholar 

  56. Huang N, Lu S, Liu XG, Zhu J, Wang YJ, Liu RT (2017) PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget 8(46):81001–81013. https://doi.org/10.18632/oncotarget.20944

    Article  PubMed  PubMed Central  Google Scholar 

  57. Alamro AA, Alsulami EA, Almutlaq M, Alghamedi A, Alokail M, Haq SH (2020) Therapeutic potential of vitamin D and curcumin in an in vitro model of Alzheimer disease. J Cent Nerv Syst Dis. https://doi.org/10.1177/1179573520924311

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xu Y, Hu R, He D, Zhou G, Wu H, Xu C, He B, Wu L, Wang Y, Chang Y, Ma R, Xie M, Xiao Z (2020) Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer’s disease by up-regulating SIRT1. Brain Behav. 10(7):e01655. https://doi.org/10.1002/brb3.1655

    Article  PubMed  PubMed Central  Google Scholar 

  59. Xu C, Xiao Z, Wu H, Zhou G, He D, Chang Y, Li Y, Wang G, Xie M (2020) BDMC protects AD in vitro via AMPK and SIRT1. Transl Neurosci 11(1):319–327. https://doi.org/10.1515/tnsci-2020-0140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi LY, Zhang L, Li H, Liu TL, Lai JC, Wu ZB, Qin J (2018) Protective effects of curcumin on acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Pharmacol Rep 70(5):1040–1046. https://doi.org/10.1016/j.pharep.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  61. Xu J, Zhou L, Weng Q, Xiao L, Li Q (2019) Curcumin analogues attenuate Aβ(25–35)-induced oxidative stress in PC12 cells via Keap1/Nrf2/HO-1 signaling pathways. Chem Biol Interact 305:171–179. https://doi.org/10.1016/j.cbi.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  62. Huang HC, Xu K, Jiang ZF (2012) Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibition of GSK-3β. J Alzheimer’s dis 32(4):981–996. https://doi.org/10.3233/jad-2012-120688

    Article  CAS  Google Scholar 

  63. Kim J, Kim J, Huang Z, Goo N, Bae HJ, Jeong Y, Park HJ, Cai M, Cho K, Jung SY, Bae SK, Ryu JH (2019) Theracurmin ameliorates cognitive dysfunctions in 5XFAD mice by improving synaptic function and mitigating oxidative stress. Biomol Ther (Seoul) 27(3):327–335. https://doi.org/10.4062/biomolther.2019.046

    Article  PubMed  Google Scholar 

  64. Gazewood JD, Richards DR, Clebak K (2013) Parkinson disease: an update. Am Fam Phys 87(4):267–273

    Google Scholar 

  65. Dhanalakshmi C, Janakiraman U, Manivasagam T, Justin Thenmozhi A, Essa MM, Kalandar A, Khan MA, Guillemin GJ (2016) Vanillin attenuated behavioural impairments, neurochemical deficts, oxidative stress and apoptosis against rotenone induced rat model of Parkinson’s disease. Neurochem Res 41(8):1899–1910. https://doi.org/10.1007/s11064-016-1901-5

    Article  CAS  PubMed  Google Scholar 

  66. García Esteban E, Cózar-Bernal MJ, Rabasco Álvarez AM, González-Rodríguez ML (2018) A comparative study of stabilising effect and antioxidant activity of different antioxidants on levodopa-loaded liposomes. J Microencapsul 35(4):357–371. https://doi.org/10.1080/02652048.2018.1487473

    Article  CAS  PubMed  Google Scholar 

  67. Motawi TK, Sadik NAH, Hamed MA, Ali SA, Khalil WKB, Ahmed YR (2020) Potential therapeutic effects of antagonizing adenosine A(2A) receptor, curcumin and niacin in rotenone-induced Parkinson’s disease mice model. Mol Cell Biochem 465(1–2):89–102. https://doi.org/10.1007/s11010-019-03670-0

    Article  CAS  PubMed  Google Scholar 

  68. Akintunde JK, Farouk AA, Mogbojuri O (2019) Metabolic treatment of syndrome linked with Parkinson’s disease and hypothalamus pituitary gonadal hormones by turmeric curcumin in Bisphenol-A induced neuro-testicular dysfunction of wistar rat. Biochem Biophys Rep 17:97–107. https://doi.org/10.1016/j.bbrep.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  69. Lv H, Liu J, Wang L, Zhang H, Yu S, Li Z, Jiang F, Niu Y, Yuan J, Cui X, Wang W (2014) Ameliorating effects of combined curcumin and desferrioxamine on 6-OHDA-induced rat mode of Parkinson’s disease. Cell Biochem Biophys 70(2):1433–1438. https://doi.org/10.1007/s12013-014-0077-3

    Article  CAS  PubMed  Google Scholar 

  70. Ramkumar M, Rajasankar S, Gobi VV, Janakiraman U, Manivasagam T, Thenmozhi AJ, Essa MM, Chidambaram R, Chidambaram SB, Guillemin GJ (2018) Demethoxycurcumin, a natural derivative of curcumin abrogates rotenone-induced dopamine depletion and motor deficits by its antioxidative and anti-inflammatory properties in parkinsonian rats. Pharmacogn Mag 14(53):9–16. https://doi.org/10.4103/pm.pm_113_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Song S, Nie Q, Li Z, Du G (2016) Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats. Pathol Res Pract 212(4):247–251. https://doi.org/10.1016/j.prp.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  72. Wang YL, Ju B, Zhang YZ, Yin HL, Liu YJ, Wang SS, Zeng ZL, Yang XP, Wang HT, Li JF (2017) Protective effect of curcumin against oxidative stress-induced injury in rats with Parkinson’s disease through the Wnt/ β-catenin signaling pathway. Cell Physiol Biochem 43(6):2226–2241. https://doi.org/10.1159/000484302

    Article  CAS  PubMed  Google Scholar 

  73. Liu S, Yu W, Lü Y (2016) The causes of new-onset epilepsy and seizures in the elderly. Neuropsychiatr Dis Treat 12:1425–1434. https://doi.org/10.2147/ndt.s107905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jerrett SA, Jefferson D, Mengel CE (1973) Seizures, H 2 O 2 formation and lipid peroxides in brain during exposure to oxygen under high pressure. Aerosp Med 44(1):40–44

    CAS  PubMed  Google Scholar 

  75. Mori N, Wada JA, Watanabe M, Kumashiro H (1991) Increased activity of superoxide dismutase in kindled brain and suppression of kindled seizure following intra-amygdaloid injection of superoxide dismutase in rats. Brain Res 557(1–2):313–315. https://doi.org/10.1016/0006-8993(91)90151-k

    Article  CAS  PubMed  Google Scholar 

  76. Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Watanabe H, Matsumoto K (2007) Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biol Pharm Bull 30(9):1732–1739. https://doi.org/10.1248/bpb.30.1732

    Article  CAS  PubMed  Google Scholar 

  77. Ohi T, Nabeshima K, Kato S, Yazawa S, Takechi S (2004) Familial amyotrophic lateral sclerosis with His46Arg mutation in Cu/Zn superoxide dismutase presenting characteristic clinical features and Lewy body-like hyaline inclusions. J Neurol Sci 225(1–2):19–25. https://doi.org/10.1016/j.jns.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  78. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39(1):73–82. https://doi.org/10.1080/01616412.2016.1251711

    Article  CAS  PubMed  Google Scholar 

  79. Chattopadhyay M, Durazo A, Sohn SH, Strong CD, Gralla EB, Whitelegge JP, Valentine JS (2008) Initiation and elongation in fibrillation of ALS-linked superoxide dismutase. Proc Natl Acad Sci USA 105(48):18663–18668. https://doi.org/10.1073/pnas.0807058105

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lam L, Halder RC, Montoya DJ, Rubbi L, Rinaldi A, Sagong B, Weitzman S, Rubattino R, Singh RR, Pellegrini M, Fiala M (2015) Anti-inflammatory therapies of amyotrophic lateral sclerosis guided by immune pathways. Am J Neurodegener Dis 4(2):28–39

    PubMed  PubMed Central  Google Scholar 

  81. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259. https://doi.org/10.1126/science.1077209

    Article  CAS  PubMed  Google Scholar 

  82. Wang Z, Liu J, Chen S, Wang Y, Cao L, Zhang Y, Kang W, Li H, Gui Y, Chen S, Ding J (2011) DJ-1 modulates the expression of Cu/Zn-superoxide dismutase-1 through the Erk1/2-Elk1 pathway in neuroprotection. Ann Neurol 70(4):591–599. https://doi.org/10.1002/ana.22514

    Article  CAS  PubMed  Google Scholar 

  83. Girotto S, Cendron L, Bisaglia M, Tessari I, Mammi S, Zanotti G, Bubacco L (2014) DJ-1 is a copper chaperone acting on SOD1 activation. J Biol Chem 289(15):10887–10899. https://doi.org/10.1074/jbc.M113.535112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu C, Fang J, Liu W (2019) Superoxide dismutase coding of gene polymorphisms associated with susceptibility to Parkinson’s disease. J Integr Neurosci 18(3):299–303. https://doi.org/10.31083/j.jin.2019.03.127

    Article  PubMed  Google Scholar 

  85. Helferich AM, Ruf WP, Grozdanov V, Freischmidt A, Feiler MS, Zondler L, Ludolph AC, McLean PJ, Weishaupt JH, Danzer KM (2015) α-synuclein interacts with SOD1 and promotes its oligomerization. Mol Neurodegener 10:66. https://doi.org/10.1186/s13024-015-0062-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Trist BG, Fifita JA, Freckleton SE, Hare DJ, Lewis SJG, Halliday GM, Blair IP, Double KL (2018) Accumulation of dysfunctional SOD1 protein in Parkinson’s disease is not associated with mutations in the SOD1 gene. Acta Neuropathol 135(1):155–156. https://doi.org/10.1007/s00401-017-1779-6

    Article  CAS  PubMed  Google Scholar 

  87. Ghodsi H, Rahimi HR, Aghili SM, Saberi A, Shoeibi A (2022) Evaluation of curcumin as add-on therapy in patients with Parkinson’s disease: a pilot randomized, triple-blind, placebo-controlled trial. Clin Neurol Neurosurg. 218:107300. https://doi.org/10.1016/j.clineuro.2022.107300

    Article  PubMed  Google Scholar 

  88. Chico L, Ienco EC, Bisordi C, Lo Gerfo A, Petrozzi L, Petrucci A, Mancuso M, Siciliano G (2018) Amyotrophic lateral sclerosis and oxidative stress: a double-blind therapeutic trial after curcumin supplementation. CNS Neurol Disord Drug Targets 17(10):767–779. https://doi.org/10.2174/1871527317666180720162029

    Article  CAS  PubMed  Google Scholar 

  89. Ghanaatian N, Lashgari NA, Abdolghaffari AH, Rajaee SM, Panahi Y, Barreto GE, Butler AE, Sahebkar A (2019) Curcumin as a therapeutic candidate for multiple sclerosis: Molecular mechanisms and targets. J Cell Physiol 234(8):12237–12248. https://doi.org/10.1002/jcp.27965

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

DK, SMR, ZNA, YH, AN, SM, AHA, TS, and TJ: wrote the main manuscript text and PK and AS: proofread and final edit the article.

Corresponding authors

Correspondence to Amir Hossein Abdolghaffari, Prashant Kesharwani or Amirhossein Sahebkar.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayatan, D., Razavi, S.M., Arab, Z.N. et al. Superoxide dismutase: a key target for the neuroprotective effects of curcumin. Mol Cell Biochem 479, 693–705 (2024). https://doi.org/10.1007/s11010-023-04757-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04757-5

Keywords

Navigation