Skip to main content

Advertisement

Log in

Ameliorating Effects of Combined Curcumin and Desferrioxamine on 6-OHDA-Induced Rat Mode of Parkinson’s Disease

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The catecholaminergic neurotoxin 6-hydroxydopamine has been widely used to mimic the lesions in dopaminergic neurons to develop Parkinson’s disease. The present study was aimed to evaluate the combined treatment with Curcumin and desferrioxamine (DFO) on 6-OHDA- induced neurotoxicity in the striatum of rats. Rat models with 6-OHDA-induced Parkinson’s disease were treated with curcumin, DFO, or both and the effect of different treatments on dopamine level was examined. Moreover, the effect of different treatments on the levels of PCC, SOD, and GSH was also assessed to elucidate the underlying mechanisms of the neuroprotective effects of combined treatment of curcumin and DFO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sowell, R. A., Owen, J. B., & Butterfield, D. A. (2009). Proteomics in animal models of Alzheimer’s and Parkinson’s diseases. Ageing Research Reviews, 8(1), 1–17.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Klockgether, T. (2004). Parkinson’s disease: Clinical aspects. Cell and Tissue Research, 318(1), 115–120.

    Article  PubMed  Google Scholar 

  3. Patt, S., et al. (1991). Pathological changes in dendrites of substantia nigra neurons in Parkinson’s disease: A Golgi study. Histology and Histopathology, 6(3), 373–380.

    PubMed  CAS  Google Scholar 

  4. Sauer, H., & Oertel, W. H. (1994). Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: A combined retrograde tracing and immunocytochemical study in the rat. Neuroscience, 59(2), 401–415.

    Article  PubMed  CAS  Google Scholar 

  5. Singh, M. P., et al. (2006). Contribution of genomics and proteomics in understanding the role of modifying factors in Parkinson’s disease. Indian Journal of Biochemistry & Biophysics, 43(2), 69–81.

    CAS  Google Scholar 

  6. Ambani, L. M., Van Woert, M. H., & Murphy, S. (1975). Brain peroxidase and catalase in Parkinson disease. Archives of Neurology, 32(2), 114–118.

    Article  PubMed  CAS  Google Scholar 

  7. Aggarwal, B. B., et al. (2007). Curcumin: The Indian solid gold. Advances in Experimental Medicine and Biology, 595, 1–75.

    Article  PubMed  Google Scholar 

  8. Mutsuga, M., et al. (2012). Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to neurofibrillary tangles in Alzheimer’s brain. Journal of Veterinary Medical Science, 74(1), 51–57.

    Article  PubMed  CAS  Google Scholar 

  9. Mythri, R. B., et al. (2011). Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: Implications for Parkinson’s disease. Molecular and Cellular Biochemistry, 347(1–2), 135–143.

    Article  PubMed  CAS  Google Scholar 

  10. Mansouri, A., & Perry, C. A. (1982). Alteration of platelet aggregation by cigarette smoke and carbon monoxide. Thrombosis and Haemostasis, 48(3), 286–288.

    PubMed  CAS  Google Scholar 

  11. Lee, W. H., et al. (2013). Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century. Current Neuropharmacology, 11(4), 338–378.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Guelman, L. R., et al. (2004). Deferoxamine antioxidant activity on cerebellar granule cells gamma-irradiated in vitro. Neurotoxicology and Teratology, 26(3), 477–483.

    Article  PubMed  CAS  Google Scholar 

  13. Nakamura, T., et al. (2004). Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. Journal of Neurosurgery, 100(4), 672–678.

    Article  PubMed  CAS  Google Scholar 

  14. Okauchi, M., et al. (2009). Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke, 40(5), 1858–1863.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Weinreb, O., et al. (2013). Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radical Biology & Medicine, 62, 52–64.

    Article  CAS  Google Scholar 

  16. Haleagrahara, N., Siew, C. J., & Ponnusamy, K. (2013). Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. Journal of Toxicological Sciences, 38(1), 25–33.

    Article  PubMed  CAS  Google Scholar 

  17. Ellenbroek, B. A., et al. (1987). The paw test: A behavioural paradigm for differentiating between classical and atypical neuroleptic drugs. Psychopharmacology (Berl), 93(3), 343–348.

    Article  CAS  Google Scholar 

  18. Richardson, J. R., et al. (2006). Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson’s disease. FASEB J, 20(10), 1695–1697.

    Article  PubMed  CAS  Google Scholar 

  19. Cicchetti, F., Drouin-Ouellet, J., & Gross, R. E. (2009). Environmental toxins and Parkinson’s disease: What have we learned from pesticide-induced animal models? Trends in Pharmacological Sciences, 30(9), 475–483.

    Article  PubMed  CAS  Google Scholar 

  20. Uversky, V. N. (2004). Neurotoxicant-induced animal models of Parkinson’s disease: Understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell and Tissue Research, 318(1), 225–241.

    Article  PubMed  CAS  Google Scholar 

  21. He, Y., Lee, T., & Leong, S. K. (2000). 6-Hydroxydopamine induced apoptosis of dopaminergic cells in the rat substantia nigra. Brain Research, 858(1), 163–166.

    Article  PubMed  CAS  Google Scholar 

  22. Singh, A., Naidu, P. S., & Kulkarni, S. K. (2003). Quercetin potentiates L-Dopa reversal of drug-induced catalepsy in rats: Possible COMT/MAO inhibition. Pharmacology, 68(2), 81–88.

    Article  PubMed  CAS  Google Scholar 

  23. Cannon, J. R., & Greenamyre, J. T. (2010). Neurotoxic in vivo models of Parkinson’s disease recent advances. Progress in Brain Research, 184, 17–33.

    Article  PubMed  CAS  Google Scholar 

  24. Deumens, R., Blokland, A., & Prickaerts, J. (2002). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Experimental Neurology, 175(2), 303–317.

    Article  PubMed  CAS  Google Scholar 

  25. Zbarsky, V., et al. (2005). Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radical Reseach, 39(10), 1119–1125.

    Article  CAS  Google Scholar 

  26. Ben-Shachar, D., et al. (1991). The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. Journal of Neurochemistry, 56(4), 1441–1444.

    Article  PubMed  CAS  Google Scholar 

  27. Yuan, W. J., et al. (2008). Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons. BMC Neuroscience, 9, 75.

    Article  PubMed  Google Scholar 

  28. Reiter, R. J. (1998). Oxidative damage in the central nervous system: Protection by melatonin. Progress in Neurobiology, 56(3), 359–384.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, J., et al. (2009). Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochemical Pharmacology, 78(2), 178–183.

    Article  PubMed  CAS  Google Scholar 

  30. Tripanichkul, W., & Jaroensuppaperch, E. O. (2013). Ameliorating effects of curcumin on 6-OHDA-induced dopaminergic denervation, glial response, and SOD1 reduction in the striatum of hemiparkinsonian mice. European Review for Medical and Pharmacological Sciences, 17(10), 1360–1368.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Liu, J., Wang, L. et al. Ameliorating Effects of Combined Curcumin and Desferrioxamine on 6-OHDA-Induced Rat Mode of Parkinson’s Disease. Cell Biochem Biophys 70, 1433–1438 (2014). https://doi.org/10.1007/s12013-014-0077-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0077-3

Keywords

Navigation