Skip to main content
Log in

Accumulation of dysfunctional SOD1 protein in Parkinson’s disease is not associated with mutations in the SOD1 gene

  • Correspondence
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bandmann O, Davis MB, Marsden CD, Harding AE (1995) Sequence of the superoxide-dismutase 1 (SOD1) gene in familial Parkinson’s disease. J Neurol Neurosurg Psychiatry 59:90–91. doi:10.1136/jnnp.59.1.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Da Cruz S, Bui A, Saberi S, Lee SK, Stauffer J, McAlonis-Downes M, Schulte D, Schulte D, Pizzo DP, Parone PA, Cleveland DW et al (2017) Misfolded SOD1 is not a primary component of sporadic ALS. Acta Neuropathol. doi:10.1007/s00401-017-1688-8 (E-published ahead of print)

    PubMed Central  Google Scholar 

  3. Davies KM, Bohic S, Carmona A, Ortega R, Cottam V, Hare DJ, Finberg JPM, Reyes S, Halliday GM, Mercer JFB et al (2014) Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiol Aging 35:858–866. doi:10.1016/j.neurobiolaging.2013.09.034

    Article  CAS  PubMed  Google Scholar 

  4. Guareschi S, Cova E, Cereda C, Ceroni M, Donetti E, Bosco DA, Trotti D, Pasinelli P (2012) An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci USA 109:5074–5079. doi:10.1073/pnas.1115402109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hilton JB, White AR, Crouch PJ (2015) Metal-deficient SOD1 in amyotrophic lateral sclerosis. J Mol Med 93:481–487. doi:10.1007/s00109-015-1273-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lynch SM, Colon W (2006) Dominant role of copper in the kinetic stability of Cu/Zn superoxide dismutase. Biochem Biophys Res Commun 340:457–461. doi:10.1016/j.bbrc.2005.12.024

    Article  CAS  PubMed  Google Scholar 

  7. McCann EP, Williams KL, Fifita JA, Tarr IS, O’Connor J, Rowe DB, Nicholson GA, Blair IP (2017) The genotype-phenotype landscape of familial amyotrophic lateral sclerosis in Australia. Clin Genet. doi:10.1111/cge.12973

    PubMed  Google Scholar 

  8. Shaw BF, Valentine JS (2007) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem Sci 32:78–85. doi:10.1016/j.tibs.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  9. Toichi K, Yamanaka K, Furukawa Y (2013) Disulfide scrambling describes the oligomer formation of superoxide dismutase (SOD1) proteins in the familial form of amyotrophic lateral sclerosis. J Biol Chem 288:4970–4980. doi:10.1074/jbc.M112.414235

    Article  CAS  PubMed  Google Scholar 

  10. Trist BG, Davies KM, Cottam V, Genoud S, Ortega R, Roudeau S, Carmona A, De Silva K, Wasinger V, Lewis SJG et al (2017) Amyotrophic lateral sclerosis-like superoxide dismutase 1 proteinopathy is associated with neuronal loss in Parkinson’s disease brain. Acta Neuropathol 134:113–127. doi:10.1007/s00401-017-1726-6

    Article  CAS  PubMed  Google Scholar 

  11. Yamakura F, Kawasaki H (2010) Post-translational modifications of superoxide dismutase. Biochem Biophys Acta 1804:318–325. doi:10.1016/j.bbapap.2009.10.010

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Tissues were received from the New South Wales Tissue Resource Centre at the University of Sydney, supported by the Schizophrenia Research Institute and the National Institute of Alcohol Abuse and Alcoholism (NIH (NIAAA) R24AA012725), from the Sydney Brain Bank, which is supported by Neuroscience Research Australia and the University of New South Wales.

Author information

Authors and Affiliations

Authors

Contributions

B.G.T. and K.L.D. designed the study. B.G.T. and K.L.D. applied for all human tissues. B.G.T. and K.L.D. raised funds for the study. B.G.T. and K.L.D. gained human research ethics approval. S.J.G.L. and G.M.H. provided clinical information for all human tissue cases obtained. J.A.F, S.E.F and I.P.B performed the experiments and analyzed the data. B.G.T., D.J.H. and K.L.D. wrote drafts of the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Kay L. Double.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or conflicts of interest.

Funding

This work was supported by funds from Parkinson’s NSW (2015 and 2016 seed grants) and the University of Sydney (Biomedical Science, BRIG).

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trist, B.G., Fifita, J.A., Freckleton, S.E. et al. Accumulation of dysfunctional SOD1 protein in Parkinson’s disease is not associated with mutations in the SOD1 gene. Acta Neuropathol 135, 155–156 (2018). https://doi.org/10.1007/s00401-017-1779-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-017-1779-6

Navigation