Skip to main content
Log in

Seiberg–Witten theory as a Fermi gas

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We explore a new connection between Seiberg–Witten theory and quantum statistical systems by relating the dual partition function of SU(2) Super Yang–Mills theory in a self-dual \(\Omega \) background to the spectral determinant of an ideal Fermi gas. We show that the spectrum of this gas is encoded in the zeroes of the Painlevé \(\mathrm{III}_3\) \(\tau \) function. In addition, we find that the Nekrasov partition function on this background can be expressed as an O(2) matrix model. Our construction arises as a four-dimensional limit of a recently proposed conjecture relating topological strings and spectral theory. In this limit, we provide a mathematical proof of the conjecture for the local \({\mathbb P}^1 \times {\mathbb P}^1\) geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The generalization to higher genus mirror curve was subsequently worked out in [38].

  2. The contour integral is reminiscent of a lateral Borel resummation see [27, 54] for more details. We have checked it numerically.

  3. We thank Oleg Lisovyy for a discussion on this point.

  4. We use the notation of [19].

  5. In Sect. 3, we restrict ourself to \(\mathrm{{i}}\sigma \in {\mathbb R}/\{0\} \) to make contact with the topological string parameters. However, from the four-dimensional perspective, we can take more general values of \(\sigma \), as in [28] and in [1823]. From the topological string perspective, this translates into the necessity of extending the conjecture [24] to arbitrary complex values of \(\hbar , m\). In particular, notice that for \(2\sigma \in {\mathbb Z}+\mathrm{{i}}{\mathbb R}/\{0\} \), one can still invert the mirror map as in Appendix A and (3.11) still vanishes.

  6. These can also be computed from the five-dimensional perspective, see [26, 7578].

  7. See [82] for the explicit definition of \(\tilde{a}_D\).

  8. Or its \(\beta \) deformed generalization.

References

  1. Gorsky, A., Krichever, I., Marshakov, A., Mironov, A., Morozov, A.: Integrability and Seiberg–Witten exact solution. Phys. Lett. B 355, 466–474 (1995). doi:10.1016/0370-2693(95)00723-X. arXiv:hep-th/9505035

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Martinec, E.J., Warner, N.P.: Integrable systems and supersymmetric gauge theory. Nucl. Phys. B 459, 97–112 (1996). doi:10.1016/0550-3213(95)00588-9. arXiv:hep-th/9509161

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Donagi, R., Witten, E.: Supersymmetric Yang-Mills theory and integrable systems. Nucl. Phys. B 460, 299–334 (1996). doi:10.1016/0550-3213(95)00609-5. arXiv:hep-th/9510101

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. arXiv:0908.4052

  5. Franco, S., Hanany, A., Kennaway, K.D., Vegh, D., Wecht, B.: Brane dimers and quiver gauge theories. JHEP 01, 096 (2006). doi:10.1088/1126-6708/2006/01/096. arXiv:hep-th/0504110

    Article  ADS  MathSciNet  Google Scholar 

  6. Franco, S., Hanany, A., Martelli, D., Sparks, J., Vegh, D., Wecht, B.: Gauge theories from toric geometry and brane tilings. JHEP 01, 128 (2006). doi:10.1088/1126-6708/2006/01/128. arXiv:hep-th/0505211

    Article  ADS  MathSciNet  Google Scholar 

  7. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). doi:10.1007/s11005-010-0369-5. arXiv:0906.3219

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Nekrasov, N.: Talk at Pomeranchuk-100. http://www.itep.ru/rus/docs/09_Nekrasov.pdf

  9. Okounkov, A.: Math.Coll. at Simons center of geometry and physics. http://media.scgp.stonybrook.edu/video/video.php?f=20130124_4_qtp.mp4

  10. Alba, V.A., Fateev, V.A., Litvinov, A.V., Tarnopolskiy, G.M.: On combinatorial expansion of the conformal blocks arising from AGT conjecture. Lett. Math. Phys. 98, 33–64 (2011). doi:10.1007/s11005-011-0503-z. arXiv:1012.1312

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Bonelli, G., Sciarappa, A., Tanzini, A., Vasko, P.: Six-dimensional supersymmetric gauge theories, quantum cohomology of instanton moduli spaces and gl(N) Quantum Intermediate Long Wave Hydrodynamics. JHEP 1407, 141 (2014). doi:10.1007/JHEP07(2014)141. arXiv:1403.6454

    Article  ADS  Google Scholar 

  12. Bonelli, G., Sciarappa, A., Tanzini, A., Vasko, P.: Quantum cohomology and quantum hydrodynamics from supersymmetric quiver gauge theories. J. Geom. Phys. 109, 3–43 (2016). doi:10.1016/j.geomphys.2015.10.001. arXiv:1505.07116

  13. Koroteev , P., Sciarappa, A.: Quantum hydrodynamics from large-n supersymmetric gauge theories. arXiv:1510.00972

  14. Nekrasov, N.: Localizing gauge theories (2003). http://www.researchgate.net/publication/253129819_Localizing_gauge_theories

  15. Gottsche, L., Nakajima, H., Yoshioka, K.: Instanton counting and Donaldson invariants. J. Differ. Geom. 80, 343–390 (2008). arXiv:math/0606180

    Article  MATH  MathSciNet  Google Scholar 

  16. Bershtein, M., Bonelli, G., Ronzani, M., Tanzini, A.: Exact results for \({ {\cal{N}}} = 2\) supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants. JHEP 07, 023 (2016). doi:10.1007/JHEP07(2016)023. arXiv:1509.00267

  17. Katz, S.H., Klemm, A., Vafa, C.: Geometric engineering of quantum field theories. Nucl. Phys. B 497, 173–195 (1997). doi:10.1016/S0550-3213(97)00282-4. arXiv:hep-th/9609239

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Iorgov, N., Lisovyy, O., Tykhyy, Y.: Painlevé VI connection problem and monodromy of \(c=1\) conformal blocks. JHEP 12, 029 (2013). doi:10.1007/JHEP12(2013)029. arXiv:1308.4092

    Article  ADS  MATH  Google Scholar 

  19. Its, A., Lisovyy, O., Tykhyy, Y.: Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks. Int. Math. Res. Not. 18, 8903–8924 (2015). arXiv:1403.1235

    Article  MATH  Google Scholar 

  20. Gamayun, O., Iorgov, N., Lisovyy, O.: Conformal field theory of Painlevé VI. JHEP 10, 038 (2012). doi:10.1007/JHEP10(2012) 183. doi:10.1007/JHEP10(2012)038. arXiv:1207.0787

  21. Gamayun, O., Iorgov, N., Lisovyy, O.: How instanton combinatorics solves Painlevé VI, V and IIIs. J. Phys. A 46, 335203 (2013). doi:10.1088/1751-8113/46/33/335203. arXiv:1302.1832

  22. Bershtein, M.A., Shchechkin, A.I.: Bilinear equations on Painlevé \(\tau \) functions from CFT. Commun. Math. Phys. 339, 1021–1061 (2015). doi:10.1007/s00220-015-2427-4. arXiv:1406.3008

    Article  ADS  MATH  Google Scholar 

  23. Iorgov, N., Lisovyy, O., Teschner, J.: Isomonodromic tau-functions from Liouville conformal blocks. Commun. Math. Phys. 336, 671–694 (2015). doi:10.1007/s00220-014-2245-0. arXiv:1401.6104

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Grassi, A., Hatsuda, Y., Marino, M.: Topological strings from quantum mechanics. Ann. Henri Poincaré (2016). doi:10.1007/s00023-016-0479-4. arXiv:1410.3382

  25. Bonelli, G., Lisovyy, O., Maruyoshi, K., Sciarappa, A., Tanzini, A. (To appear)

  26. Iqbal, A., Kashani-Poor, A.-K.: Instanton counting and Chern–Simons theory. Adv. Theor. Math. Phys. 7, 457–497 (2003). doi:10.4310/ATMP.2003.v7.n3.a4. arXiv:hep-th/0212279

    Article  MATH  MathSciNet  Google Scholar 

  27. Hatsuda, Y., Marino, M.: Exact quantization conditions for the relativistic Toda lattice. JHEP05, 133 (2016). doi:10.1007/JHEP05(2016)133. arXiv:1511.02860

  28. Zamolodchikov, A.B.: Painleve III and 2-d polymers. Nucl. Phys. B 432, 427–456 (1994). doi:10.1016/0550-3213(94)90029-9. arXiv:hep-th/9409108

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Nekrasov, N., Okounkov, A.: Seiberg–Witten theory and random partitions. Prog. Math. 244, 525–596 (2006). doi:10.1007/0-8176-4467-9_15. arXiv:hep-th/0306238

    Article  MATH  MathSciNet  Google Scholar 

  30. Kostov, I.K.: Solvable statistical models on a random lattice. Nucl. Phys. Proc. Suppl. 45A, 13–28 (1996). doi:10.1016/0920-5632(95)00611-7. arXiv:hep-th/9509124

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Kostov, I.K.: O(\(n\)) vector model on a planar random lattice: spectrum of anomalous dimensions. Mod. Phys. Lett. A 4, 217 (1989). doi:10.1142/S0217732389000289

    Article  ADS  MathSciNet  Google Scholar 

  32. Marino, M.: Spectral theory and mirror symmetry. arXiv:1506.07757

  33. Kallen, J., Marino, M.: Instanton effects and quantum spectral curves. Ann. Henri Poincare 17, 1037–1074 (2016). doi:10.1007/s00023-015-0421-1. arXiv:1308.6485

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Hatsuda, Y., Marino, M., Moriyama, S., Okuyama, K.: Non-perturbative effects and the refined topological string. JHEP 1409, 168 (2014). doi:10.1007/JHEP09(2014)168. arXiv:1306.1734

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Huang, M.-X., Wang, X.-F.: Topological strings and quantum spectral problems. JHEP 1409, 150 (2014). doi:10.1007/JHEP09(2014)150. arXiv:1406.6178

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Codesido, S., Grassi, A., Marino, M.: Exact results in N \(=\) 8 Chern–Simons-matter theories and quantum geometry. JHEP 1507, 011 (2015). doi:10.1007/JHEP07(2015)011. arXiv:1409.1799

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Grassi, A., Hatsuda, Y., Marino, M.: Quantization conditions and functional equations in ABJ(M) theories. J. Phys. A 49, 115401 (2016). doi:10.1088/1751-8113/49/11/115401. arXiv:1410.7658

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Codesido, S., Grassi, A., Marino, M.: Spectral theory and mirror curves of higher genus. arXiv:1507.02096

  39. Kashaev, R., Marino, M., Zakany, S.: Matrix models from operators and topological strings 2. arXiv:1505.02243

  40. Brini, A., Tanzini, A.: Exact results for topological strings on resolved Y**p, q singularities. Commun. Math. Phys. 289, 205–252 (2009). doi:10.1007/s00220-009-0814-4. arXiv:0804.2598

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Huang, M.-X., Klemm, A., Poretschkin, M.: Refined stable pair invariants for E-, M- and \([p, q]\)- strings. JHEP 1311, 112 (2013). doi:10.1007/JHEP11(2013)112. arXiv:1308.0619

    Article  ADS  MATH  Google Scholar 

  42. Huang, M.-X., Klemm, A., Reuter, J., Schiereck, M.: Quantum geometry of del Pezzo surfaces in the Nekrasov–Shatashvili limit. JHEP 1502, 031 (2015). doi:10.1007/JHEP02(2015)031. arXiv:1401.4723

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Marino, M., Putrov, P.: ABJM theory as a Fermi gas. J. Stat. Mech. 1203, P03001 (2012). doi:10.1088/1742-5468/2012/03/P03001. arXiv:1110.4066

    Article  MathSciNet  Google Scholar 

  44. Hatsuda, Y., Moriyama, S., Okuyama, K.: Exact results on the ABJM Fermi Gas. JHEP 1210, 020 (2012). doi:10.1007/JHEP10(2012)020. arXiv:1207.4283

    Article  ADS  Google Scholar 

  45. Hatsuda, Y., Moriyama, S., Okuyama, K.: Instanton effects in ABJM theory from Fermi gas approach. JHEP 1301, 158 (2013). doi:10.1007/JHEP01(2013)158. arXiv:1211.1251

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Hatsuda, Y., Moriyama, S., Okuyama, K.: Instanton bound states in ABJM theory. JHEP 1305, 054 (2013). doi:10.1007/JHEP05(2013)054. arXiv:1301.5184

    Article  ADS  MATH  Google Scholar 

  47. Calvo, F., Marino, M.: Membrane instantons from a semiclassical TBA. JHEP 1305, 006 (2013). doi:10.1007/JHEP05(2013)006. arXiv:1212.5118

    Article  ADS  Google Scholar 

  48. Gu, J., Klemm, A., Marino, M., Reuter, J.: Exact solutions to quantum spectral curves by topological string theory. JHEP10, 025 (2015). doi:10.1007/JHEP10(2015)025. arXiv:1506.09176

  49. Hatsuda, Y.: Spectral zeta function and non-perturbative effects in ABJM Fermi-gas. JHEP 11, 086 (2015). doi:10.1007/JHEP11(2015)086. arXiv:1503.07883

  50. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological field theories. Nucl. Phys. B 405, 279–304 (1993). doi:10.1016/0550-3213(93)90548-4. arXiv:hep-th/9302103

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Gopakumar, R., Vafa, C.: M theory and topological strings. 2. arXiv:hep-th/9812127

  52. Choi, J., Katz, S., Klemm, A.: The refined BPS index from stable pair invariants. Commun. Math. Phys. 328, 903–954 (2014). doi:10.1007/s00220-014-1978-0. arXiv:1210.4403

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Nekrasov, N., Okounkov, A.: Membranes and sheaves. arXiv:1404.2323

  54. Hatsuda, Y., Okuyama, K.: Resummations and non-perturbative corrections. JHEP 09, 051 (2015). doi:10.1007/JHEP09(2015)051. arXiv:1505.07460

    Article  MathSciNet  MATH  Google Scholar 

  55. Kashaev, R., Marino, M.: Operators from mirror curves and the quantum dilogarithm. Commun. Math. Phys. 346, 967 (2016). arXiv:1501.01014

  56. Marino, M., Zakany, S.: Matrix models from operators and topological strings. Ann. Henri Poincare17, 1075–1108 (2016). doi:10.1007/s00023-015-0422-0. arXiv:1502.02958

  57. Okuyama, K., Zakany, S.: TBA-like integral equations from quantized mirror curves. JHEP 03, 101 (2016). doi:10.1007/JHEP03(2016)101. arXiv:1512.06904

  58. Wang, X., Zhang, G., Huang, M.-X.: New exact quantization condition for Toric Calabi–Yau geometries. Phys. Rev. Lett. 115, 121601 (2015). doi:10.1103/PhysRevLett.115.121601. arXiv:1505.05360

  59. Iqbal, A., Kozcaz, C., Vafa, C.: The refined topological vertex. JHEP 0910, 069 (2009). doi:10.1088/1126-6708/2009/10/069. arXiv:hep-th/0701156

    Article  ADS  MathSciNet  Google Scholar 

  60. Hollowood, T.J., Iqbal, A., Vafa, C.: Matrix models, geometric engineering and elliptic genera. JHEP 03, 069 (2008). doi:10.1088/1126-6708/2008/03/069. arXiv:hep-th/0310272

    Article  ADS  MathSciNet  Google Scholar 

  61. Nekrasov, N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004). doi:10.4310/ATMP.2003.v7.n5.a4. arXiv:hep-th/0206161

  62. Bruzzo, U., Fucito, F., Morales, J.F., Tanzini, A.: Multiinstanton calculus and equivariant cohomology. JHEP 0305, 054 (2003). doi:10.1088/1126-6708/2003/05/054. arXiv:hep-th/0211108

    Article  ADS  Google Scholar 

  63. Flume, R., Poghossian, R.: An algorithm for the microscopic evaluation of the coefficients of the Seiberg–Witten prepotential. Int. J. Mod. Phys. A 18, 2541 (2003). doi:10.1142/S0217751X03013685. arXiv:hep-th/0208176

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Jimbo, M.: Monodromy problem and the boundary condition for some Painlevé equations. Publ. Res. Inst. Math. Sci 18, 1137–1161 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  65. Novokshenov, V.: On the asymptotics of the general real solution of the Painlevé equation of the third kind. Sov. Phys. Dokl 30, 666–668 (1985)

    ADS  MATH  Google Scholar 

  66. Faddeev, L.: Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys. 34, 249–254 (1995). doi:10.1007/BF01872779. arXiv:hep-th/9504111

    Article  ADS  MATH  MathSciNet  Google Scholar 

  67. Faddeev, L., Kashaev, R.: Quantum dilogarithm. Mod. Phys. Lett. A 9, 427–434 (1994). doi:10.1142/S0217732394000447. arXiv:hep-th/9310070

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. Hatsuda, Y.: ABJM on ellipsoid and topological strings. JHEP 07, 026 (2016). doi:10.1007/JHEP07(2016)026. arXiv:1601.02728

  69. Grassi, A., Marino, M.: M-theoretic matrix models. JHEP 1502, 115 (2015). doi:10.1007/JHEP02(2015)115. arXiv:1403.4276

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Fendley, P., Saleur, H.: N \(=\) 2 supersymmetry, Painleve III and exact scaling functions in 2-D polymers. Nucl. Phys. B 388, 609–626 (1992). doi:10.1016/0550-3213(92)90556-Q. arXiv:hep-th/9204094

    Article  ADS  MathSciNet  Google Scholar 

  71. Cecotti, S., Fendley, P., Intriligator, K.A., Vafa, C.: A New supersymmetric index. Nucl. Phys. B 386, 405–452 (1992). doi:10.1016/0550-3213(92)90572-S. arXiv:hep-th/9204102

    Article  ADS  MathSciNet  Google Scholar 

  72. Mussardo, G.: Statistical Field Theory. Oxford University Press, Oxford (2010)

  73. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N \(=\) 2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994). doi:10.1016/0550-3213(94)90214-3. arXiv:hep-th/9408099

    Article  ADS  MATH  MathSciNet  Google Scholar 

  74. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in N \(=\) 2 supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994). doi:10.1016/0550-3213(94)90124-4. arXiv:hep-th/9407087

    Article  ADS  MATH  MathSciNet  Google Scholar 

  75. Dijkgraaf, R., Gukov, S., Kazakov, V.A., Vafa, C.: Perturbative analysis of gauged matrix models. Phys. Rev. D 68, 045007 (2003). doi:10.1103/PhysRevD.68.045007. arXiv:hep-th/0210238

    Article  ADS  MATH  MathSciNet  Google Scholar 

  76. Cachazo, F., Vafa, C.: N \(= 1\) and N \(= 2\) geometry from fluxes. arXiv:hep-th/0206017

  77. Dijkgraaf, R., Vafa, C.: A perturbative window into nonperturbative physics. arXiv:hep-th/0208048

  78. Klemm, A., Marino, M., Theisen, S.: Gravitational corrections in supersymmetric gauge theory and matrix models. JHEP 03, 051 (2003). doi:10.1088/1126-6708/2003/03/051. arXiv:hep-th/0211216

    Article  ADS  MathSciNet  Google Scholar 

  79. Eynard, B., Kristjansen, C.: More on the exact solution of the O(n) model on a random lattice and an investigation of the case |n| > 2. Nucl. Phys. B 466, 463–487 (1996). doi:10.1016/0550-3213(96)00104-6. arXiv:hep-th/9512052

    Article  ADS  MATH  MathSciNet  Google Scholar 

  80. Eynard, B., Kristjansen, C.: Exact solution of the O(n) model on a random lattice. Nucl. Phys. B 455, 577–618 (1995). doi:10.1016/0550-3213(95)00469-9. arXiv:hep-th/9506193

    Article  ADS  MATH  MathSciNet  Google Scholar 

  81. Kostov, I.K., Staudacher, M.: Multicritical phases of the O(n) model on a random lattice. Nucl. Phys. B 384, 459–483 (1992). doi:10.1016/0550-3213(92)90576-W. arXiv:hep-th/9203030

    Article  ADS  MathSciNet  Google Scholar 

  82. Huang, M.-X., Klemm, A.: Holomorphic anomaly in gauge theories and matrix models. JHEP 09, 054 (2007). doi:10.1088/1126-6708/2007/09/054. arXiv:hep-th/0605195

    Article  ADS  MathSciNet  Google Scholar 

  83. Dijkgraaf, R., Vafa, C.: Toda theories, matrix models, topological strings, and N \(=2\) gauge systems. arXiv:0909.2453

  84. Eguchi, T., Maruyoshi, K.: Penner type matrix model and Seiberg–Witten theory. JHEP 02, 022 (2010). doi:10.1007/JHEP02(2010)022. arXiv:0911.4797

    Article  ADS  MATH  MathSciNet  Google Scholar 

  85. Eguchi, T., Maruyoshi, K.: Seiberg–Witten theory, matrix model and AGT relation. JHEP 07, 081 (2010). doi:10.1007/JHEP07(2010)081. arXiv:1006.0828

    Article  ADS  MATH  MathSciNet  Google Scholar 

  86. Bonelli, G., Maruyoshi, K., Tanzini, A.: Quantum Hitchin systems via beta-deformed matrix models. arXiv:1104.4016

  87. Bonelli, G., Maruyoshi, K., Tanzini, A., Yagi, F.: Generalized matrix models and AGT correspondence at all genera. JHEP 07, 055 (2011). doi:10.1007/JHEP07(2011)055. arXiv:1011.5417

    Article  ADS  MATH  MathSciNet  Google Scholar 

  88. Maruyoshi, K.: \(\beta \)-deformed matrix models and the 2d/4d correspondence. In: Teschner, J. (ed.) New Dualities of Supersymmetric Gauge Theories, pp. 121–157 (2016). doi:10.1007/978-3-319-18769-3_5. arXiv:1412.7124 doi: 10.1007/978-3-319-18769-3_5

  89. Dijkgraaf, R., Vafa, C.: Matrix models, topological strings, and supersymmetric gauge theories. Nucl. Phys. B 644, 3–20 (2002). doi:10.1016/S0550-3213(02)00766-6. arXiv:hep-th/0206255

    Article  ADS  MATH  MathSciNet  Google Scholar 

  90. Cecotti, S., Vafa, C.: Ising model and N \(= 2\) supersymmetric theories. Commun. Math. Phys. 157, 139–178 (1993). doi:10.1007/BF02098023. arXiv:hep-th/9209085

    Article  ADS  MATH  MathSciNet  Google Scholar 

  91. Parisi, G.: Statistical Field Theory. Westview Press, Boulder (1998)

    Google Scholar 

  92. Bonelli, G., Grassi, A., Tanzini, A. (To appear)

  93. Mironov, A., Morozov, A.: Nekrasov functions and exact Bohr–Sommerfeld integrals. JHEP 1004, 040 (2010). doi:10.1007/JHEP04(2010)040. arXiv:0910.5670

    Article  ADS  MATH  MathSciNet  Google Scholar 

  94. Mironov, A., Morozov, A.: Nekrasov functions from exact BS periods: the case of SU(N). J. Phys. A 43, 195401 (2010). doi:10.1088/1751-8113/43/19/195401. arXiv:0911.2396

    Article  ADS  MATH  MathSciNet  Google Scholar 

  95. Maruyoshi, K., Taki, M.: Deformed prepotential, quantum integrable system and Liouville field theory. Nucl. Phys. B 841, 388–425 (2010). doi:10.1016/j.nuclphysb.2010.08.008. arXiv:1006.4505

    Article  ADS  MATH  MathSciNet  Google Scholar 

  96. Tan, M.-C.: M-Theoretic derivations of 4d–2d dualities: from a geometric Langlands duality for surfaces, to the AGT correspondence, to integrable systems. JHEP 07, 171 (2013). doi:10.1007/JHEP07(2013)171. arXiv:1301.1977

    Article  ADS  MATH  MathSciNet  Google Scholar 

  97. Aganagic, M., Dijkgraaf, R., Klemm, A., Marino, M., Vafa, C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451–516 (2006). doi:10.1007/s00220-005-1448-9. arXiv:hep-th/0312085

    Article  ADS  MATH  MathSciNet  Google Scholar 

  98. Aganagic, M., Cheng, M.C., Dijkgraaf, R., Krefl, D., Vafa, C.: Quantum geometry of refined topological strings. JHEP 1211, 019 (2012). doi:10.1007/JHEP11(2012)019. arXiv:1105.0630

    Article  ADS  MathSciNet  Google Scholar 

  99. Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005). doi:10.1007/s00220-004-1162-z. arXiv:hep-th/0305132

    Article  ADS  MATH  MathSciNet  Google Scholar 

  100. Huang, M.-X., Klemm, A.: Direct integration for general \(\Omega \) backgrounds. Adv. Theor. Math. Phys. 16, 805–849 (2012). doi:10.4310/ATMP.2012.v16.n3.a2. arXiv:1009.1126

    Article  MATH  MathSciNet  Google Scholar 

  101. Huang, M.-X., Kashani-Poor, A.-K., Klemm, A.: The \(\Omega \) deformed B-model for rigid \({{\cal{N}}}=2\) theories. Ann. Henri Poincare 14, 425–497 (2013). doi:10.1007/s00023-012-0192-x. arXiv:1109.5728

    Article  ADS  MATH  MathSciNet  Google Scholar 

  102. McCoy, B.M., Tracy, C.A., Wu, T.T.: Painleve functions of the third kind. J. Math. Phys. 18, 1058 (1977). doi:10.1063/1.523367

    Article  ADS  MATH  MathSciNet  Google Scholar 

  103. Tracy, C.A., Widom, H.: Fredholm determinants and the mKdv/sinh-Gordon hierarchies. Commun. Math. Phys 179, 1–9. arXiv:solv-int/9506006

Download references

Acknowledgments

We would like to thank Davide Guzzetti, Yasuyuki Hatsuda, Oleg Lisovyy, Marcos Mariño, Massimiliano Ronzani, and Antonio Sciarappa for useful discussions and for clarifications on their previous works. Especially, Omar Foda, Marcos Mariño, and Antonio Sciarappa for useful comments and a careful reading of the manuscript. This research was partly supported by the INFN Research Projects GAST and ST&FI and by PRIN “Geometria delle varietà algebriche”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Grassi.

Appendices

Appendix A: Quantum A-period

The notion of quantum A-period was studied in the context of AGT correspondence [86, 9396] and topological strings [97, 98]. It is the integral of a quantum differential over the A-cycle of a given curve. In the particular case of local \({\mathbb P}^1 \times {\mathbb P}^1\), the quantum A-period has been computed in [98] and reads

$$\begin{aligned} {t(\mu , \hbar ) \over 2}= & {} \Pi _A(\mu , \hbar )=\mu +(-m_{{\mathbb F}_0}-1) z\nonumber \\&+\,z^2 \left( -\frac{3 m_{{\mathbb F}_0}^2}{2}-m_{{\mathbb F}_0} q-\frac{m_{{\mathbb F}_0}}{q}-4 m_{{\mathbb F}_0}-\frac{3}{2}\right) +O\left( z^3\right) , \end{aligned}$$
(A.1)

where \(z=\mathrm{{e}}^{-2\mu }\) and \(q=\mathrm{{e}}^{ \mathrm{{i}}\hbar }\). This relation can also be inverted using an ansatz of type

$$\begin{aligned} \mu =\Pi _A+\sum _{n\ge 1} a_n(m_{{\mathbb F}_0})\mathrm{{e}}^{-2n\Pi _A}. \end{aligned}$$
(A.2)

We find

$$\begin{aligned} \mu =\Pi _A+\sum _{n\ge 0} \Pi _n(z_2,q)z_1^n \end{aligned}$$
(A.3)

where

$$\begin{aligned} z_1=\mathrm{{e}}^{- 2\Pi _A}, \quad z_2=m_{{{\mathbb F}_0}}\mathrm{{e}}^{- 2\Pi _A}. \end{aligned}$$
(A.4)

Notice that in the 4d limit (3.2), we have

$$\begin{aligned} z_1 \rightarrow 0, \quad z_2 \rightarrow \mathrm{{e}}^{4 \pi \mathrm{{i}}\sigma }. \end{aligned}$$
(A.5)

Therefore, it is important to resum the \(z_2\) expansion. For the first few coefficients, we find

$$\begin{aligned} \Pi _0(z_2,q)= & {} \log (1+z_2) , \nonumber \\ \Pi _1(z_2,q)= & {} 1+\frac{z_2 \left( -q^2+2 q z_2-1\right) }{(z_2-1) (z_2-q) (q z_2-1)}. \end{aligned}$$
(A.6)

In the four-dimensional limit, we have

$$\begin{aligned} \Pi _0(z_2,q)&\xrightarrow {4D}&\log (1+\mathrm{{e}}^{4 \pi \mathrm{{i}}\sigma }), \nonumber \\ \Pi _1(z_2,q)&\quad \xrightarrow {4D}&\quad 1+ \frac{1}{\cos (4 \pi \sigma )-1}. \end{aligned}$$
(A.7)

Notice that in our construction, the mass parameter of local \({\mathbb P}^1 \times {\mathbb P}^1\) and \(\hbar \) are both positive. Hence, \(\sigma \) is purely imaginary and \(\sigma \ne 0\); therefore, \( \Pi _1(z_2,q)\) is perfectly well-defined. Similarly, for the other \( \Pi _n(z_2,q)\). It follows that

$$\begin{aligned} \mu - {t(\mu , \hbar ) \over 2} \xrightarrow {4D} \log (1+\mathrm{{e}}^{4 \pi \mathrm{{i}}\sigma }) . \end{aligned}$$
(A.8)

Appendix B: Standard and NS free energies

The free energy of the standard topological string at large radius was computed in [51, 99] and it reads

$$\begin{aligned} F^\mathrm{GV}(\mathbf{{t}}, g_s)=\sum _{g\ge 0} \sum _\mathbf{d} \sum _{w=1}^\infty {1\over w} n_g^{ \mathbf{d}} \left( 2 \sin { w g_s \over 2} \right) ^{2g-2} \mathrm{{e}}^{-w \mathbf{d} \cdot \mathbf{t}} . \end{aligned}$$
(B.1)

The variable \(\mathbf{{t}}\) denotes the Kähler parameters of the geometry, \(g_s\) the string coupling, and \(n_g^\mathbf{d}\) the Gopakumar–Vafa invariants. These can be easily computed with the topological vertex [99] formalism or the holomorphic anomaly equation [50]. For the local \({\mathbb P}^1 \times {\mathbb P}^1\) geometry, we have, for instance

$$\begin{aligned} F^\mathrm{GV}(\mathbf{{t}}, g_s)= & {} \frac{2 q( \mathrm{{e}}^{-t_1} + \mathrm{{e}}^{-t_2})}{(q-1)^2}+\frac{4 q \mathrm{{e}}^{-t_1} \mathrm{{e}}^{-t_2}}{(q-1)^2}+\frac{q^2 \mathrm{{e}}^{-2t_1}}{(q-1)^2 (q+1)^2}\nonumber \\&+\frac{q^2 \mathrm{{e}}^{-2t_2}}{(q-1)^2 (q+1)^2}+ \mathcal {O}(\mathrm{{e}}^{-3 t_i}) , \end{aligned}$$
(B.2)

where \(q=\mathrm{{e}}^{\mathrm{{i}}g_s}\).

Similarly the free energy of refined topological string in the NS limit reads [59]

$$\begin{aligned} F^\mathrm{NS}(\mathbf{{t}}, \hbar )={1\over 6 \hbar } a_{ijk} t_i t_j t_k +b^\mathrm{NS}_i t_i \hbar + F^\mathrm{NS}_\mathrm{inst}(\mathbf{{t}}, \hbar ) -\sum _{n\ge 1}\frac{1}{n^2}{\mathrm{e}^{-n t_2 } \cot \left( \frac{n \hbar }{2}\right) }\qquad \end{aligned}$$
(B.3)

where

$$\begin{aligned} \begin{array}{l} \displaystyle F^\mathrm{NS}_\mathrm{inst}(\mathbf{{t}}, \hbar )= \sum _{j_L, j_R} \sum _{w, \mathbf{d} } N^{\mathbf{d}}_{j_L, j_R} \frac{\sin \frac{\hbar w}{2}(2j_L+1)\sin \frac{\hbar w}{2}(2j_R+1)}{2 w^2 \sin ^3\frac{\hbar w}{2}} \mathrm{{e}}^{-w \mathbf{d}\cdot \mathbf{t}},\\ \displaystyle \quad \mathbf{d}=\{d_1, d_2\}, \quad d_1>0, \quad d_2 \ge 0 \end{array} \end{aligned}$$
(B.4)

and \(N_{j_L,j_R}^\mathbf{d}\) denote the refined BPS invariants [52, 53]. These can be computed using the refined topological vertex [59] or the refined holomorphic anomaly [100, 101]. The last term in (B.3) is often called the one-loop contribution to the NS free energy.

For the local \({\mathbb P}^1 \times {\mathbb P}^1\) geometry, we have, for instance

$$\begin{aligned} F^\mathrm{NS}(\mathbf{{t}}, \hbar )=\ \frac{t_1^3}{6 \hbar }-\frac{t_1^2 (t_1-t_2)}{4 \hbar }-\frac{t_1 \hbar }{12}- \cot \left( \frac{\hbar }{2}\right) \left( \mathrm{{e}}^{-t_1}+\mathrm{{e}}^{-t_2}\right) + \mathcal {O}(\mathrm{{e}}^{-2 t_i}).\nonumber \\ \end{aligned}$$
(B.5)

The expressions (B.1) and (B.3) are valid at the large radius point of the moduli space, where

$$\begin{aligned} t_2, t_1 \rightarrow \infty . \end{aligned}$$
(B.6)

However, thanks to the refined topological vertex formalism [26, 59], it is possible to perform a partial resummation in \(t_2\) to obtain an expression which is valid around

$$\begin{aligned} t_1 \rightarrow \infty , \quad t_2 \rightarrow 0. \end{aligned}$$
(B.7)

As an example, we consider the standard free energy of local \({\mathbb P}^1 \times {\mathbb P}^1\). Using the refined topological vertex, we obtain

$$\begin{aligned}&F^\mathrm{GV}(\mathbf{{t}}, g_s)=F_\mathrm{ol}(\mathrm{{e}}^{-t_2})+\frac{2 q \mathrm{{e}}^{-t_1}}{(q-1)^2 (\mathrm{{e}}^{-t_2}-1)^2}\nonumber \\&\quad +\,\frac{q^2 \mathrm{{e}}^{-2t_1}\left( q^2 \mathrm{{e}}^{-4t_1}+q^2+4 q (q+1)^2 \mathrm{{e}}^{-3t_2}-2 (q (q+1) (q (q+3)+4)+1) \mathrm{{e}}^{-2 t_2}+4 q (q+1)^2 \mathrm{{e}}^{-t_2}\right) }{(q-1)^2 (q+1)^2 (\mathrm{{e}}^{-t_2}-1)^4 (q-\mathrm{{e}}^{-t_2})^2 (q \mathrm{{e}}^{-t_2}-1)^2}\nonumber \\&\quad +\,\mathcal {O}(\mathrm{{e}}^{-3t_1}) , \quad q=\mathrm{{e}}^{\mathrm{{i}}g_s} , \end{aligned}$$
(B.8)

where \(F_\mathrm{ol}(\mathrm{{e}}^{-t_2})\) is what we call the one-loop contribution of the standard topological strings. In Appendix C, we show that, when this is appropriately combined with the one-loop contribution of the NS free energy, one can resum it using the methods of [54] .

Similarly, using the refined topological vertex, one has

$$\begin{aligned} F^\mathrm{NS}_\mathrm{inst}(\mathbf{{t}}, \hbar )=\frac{\mathrm{{i}}\mathrm{e}^{\mathrm{{i}}\hbar } \left( 1+\mathrm{e}^{\mathrm{{i}}\hbar }\right) \mathrm{{e}}^{-t_1} }{\left( -1+\mathrm{e}^{\mathrm{{i}}\hbar }\right) \left( -\mathrm{{e}}^{-t_2}+\mathrm{e}^{i \hbar }\right) \left( -1+\mathrm{{e}}^{-t_2} \mathrm{e}^{\mathrm{{i}}\hbar }\right) }+\mathcal {O}(\mathrm{{e}}^{-2 t_1}). \end{aligned}$$
(B.9)

Appendix C: Integral representation for the one-loop contribution

In this appendix, we use the results of [54] to compute the one-loop part (3.8) of the spectral determinant (2.5).

It was shown in [54] that

$$\begin{aligned}&\sum _{m=1}^\infty \frac{(-1)^m}{ 2 m}\left( \sin \frac{m g_s}{2}\right) ^{-2} \mathrm{{e}}^{-m t} -\sum _{\ell =1}^\infty \frac{1}{4\pi \ell ^2} 2\csc \left( \frac{2\pi ^2 \ell }{g_s}\right) \nonumber \\&\qquad \times \,\left[ \frac{2\pi \ell }{g_s}\left( t\right) +\frac{2\pi ^2 \ell }{g_s} \cot \left( \frac{2\pi ^2 \ell }{g_s}\right) +1 \right] \mathrm{{e}}^{-\frac{2\pi \ell t}{g_s} } \nonumber \\&\quad = 2\frac{\text {Li}_3(-\mathrm{{e}}^{-t})}{g_s^2} -2\int _0^{\infty } \mathrm{{d}}x\frac{x}{\mathrm{{e}}^{2\pi x}-1}\log (1+\mathrm{{e}}^{-2t}+2\mathrm{{e}}^{-t}\cosh g_sx). \end{aligned}$$
(C.1)

With some algebraic manipulations and by following [54], we can write it as

$$\begin{aligned}&\sum _{m=1}^\infty \frac{1}{ 2 m}\left( \sin \frac{m g_s}{2}\right) ^{-2} \mathrm{{e}}^{-m t} -\sum _{\ell =1}^\infty \frac{1}{4\pi \ell ^2} 2\cot \left( \frac{2\pi ^2 \ell }{g_s}\right) \left[ \frac{2\pi \ell }{g_s}t+1 \right] \mathrm{{e}}^{-\frac{2\pi \ell t}{g_s} }\nonumber \\&\quad -{\pi \over g_s}\sum _{\ell =1}^\infty {1\over \ell } \cot \left( \frac{2\pi ^2 \ell }{g_s}\right) ^2 \mathrm{{e}}^{-\frac{2\pi \ell t}{g_s} } =-{\pi \over g_s} \log \left( 1-\mathrm{{e}}^{-\frac{2\pi t}{g_s} }\right) +2 \frac{\text {Li}_3(\mathrm{{e}}^{-t})}{g_s^2} \nonumber \\&\quad - 2 \mathrm{Re}\int _0^{\infty \mathrm{{e}}^{\mathrm{{i}}0}} \mathrm{{d}}x\frac{x}{\mathrm{{e}}^{2\pi x}-1}\log (1+\mathrm{{e}}^{-2t}-2\mathrm{{e}}^{-t}\cosh g_sx), \end{aligned}$$
(C.2)

which reproduces precisely (3.8). This means that the one-loop part of the standard topological string plus the one-loop part of the NS limit of topological string sum up to give the non-perturbative free energy of topological string on the resolved conifold, as given in [54].

Appendix D: Spectral determinant and Painlevé III equation

In this section, we briefly review the results of [28]. These results will be relevant in Sect. 3.

We define the Zamolodchikov spectral determinant \(\Xi _\mathrm{Z}(\kappa , t)\) as

$$\begin{aligned} \Xi _\mathrm{Z}(\kappa , t)=\sum _{N\ge 0} \kappa ^N{D_N(t)\over N!}, \end{aligned}$$
(D.1)

where

$$\begin{aligned} D_N(t)= \int \prod _{i=1}^N {\mathrm{d}z_i\over z_i}\mathrm{{e}}^{- 2 \sum _{i=1}^N u(z_i, t)} \frac{\prod _{i< j} (z_i-z_j)^2}{\prod _{i <j} (z_i+z_j)^2}, \end{aligned}$$
(D.2)

with

$$\begin{aligned} u(z,t)={t\over 4} z+{t\over 4} z^{-1}, \quad t>0. \end{aligned}$$
(D.3)

From [28, 102, 103], it follows that \( \Xi _\mathrm{Z}(\kappa , t)\) satisfies

$$\begin{aligned} 4 \left( \left( {\mathrm{d}\over \mathrm{d}t}\right) ^2+{1\over t}{\mathrm{d}\over \mathrm{d}t}\right) (-\log \Xi _\mathrm{Z}(\kappa ,t))=\left( { \Xi _\mathrm{Z}(-\kappa ,t)\over \Xi _\mathrm{Z}(\kappa ,t)}\right) ^2-1. \end{aligned}$$
(D.4)

Similarly

$$\begin{aligned} U(\kappa ,t)=2 \mathrm{{i}}\log \left( \mathrm{{i}}\Xi _\mathrm{Z}(-\kappa ,t)/ \Xi _\mathrm{Z}(\kappa ,t)\right) \end{aligned}$$
(D.5)

satisfies

$$\begin{aligned} \left( \left( {\mathrm{d}\over \mathrm{d}t}\right) ^2+{1\over t}{\mathrm{d}\over \mathrm{d}t}\right) U(\kappa ,t) =-\sin ( U(\kappa ,t) ). \end{aligned}$$
(D.6)

In the context of Painlevé equations, it useful to introduce the so-called \(\tau \) function which is related to the solution of (D.6) as

$$\begin{aligned} \mathrm{{e}}^{-\mathrm{{i}}U(\kappa ,t) }={4 \over t }{\mathrm{d} \over \mathrm{d}t} t {\mathrm{d} \over \mathrm{d}t}\log \tau (t^4 2^{-12}, \kappa ). \end{aligned}$$
(D.7)

From (D.4), it follows that

$$\begin{aligned} {4\over t}{\mathrm{d}\over \mathrm{d}t}t {\mathrm{d}\over \mathrm{d}t} \log \left[ \Xi _\mathrm{Z}(\kappa ,t)\mathrm{{e}}^{-t^2/16 }\right] =\left( \mathrm{{i}}{ \Xi _\mathrm{Z}(-\kappa ,t)\over \Xi _\mathrm{Z}(\kappa ,t)}\right) ^2. \end{aligned}$$
(D.8)

This means that

$$\begin{aligned} \Xi _\mathrm{Z}(\kappa ,t)\mathrm{{e}}^{-t^2/16 } \end{aligned}$$
(D.9)

is the \(\tau \) function corresponding to the solution of (D.6). The small t expansion of \(\Xi _Z(\kappa ,t)\) was also computed in [28], where the author shows that

$$\begin{aligned} \Xi _\mathrm{Z}(\kappa ,t)\approx & {} \left( {t \over 8}\right) ^{4 \sigma ^2-\frac{1}{4}} \exp \left[ 3 \zeta '(-1)+{5\over 6}\log 2 -4 \sigma ^2 (\log (8)-1)+2 \sigma \text {log}\Gamma (-2 \sigma ) \right] \nonumber \\&\times \exp \left[ -2 \sigma \text {log}\Gamma (2 \sigma )+\psi ^{(-2)}(-2 \sigma )+\psi ^{(-2)}(2 \sigma )\right] . \end{aligned}$$
(D.10)

The variable \(\sigma \) in (D.10) is related to \(\kappa \) through

$$\begin{aligned} 2 \pi \kappa =\cos {2\pi \sigma } \end{aligned}$$
(D.11)

and we can assume without loss of generalities \( 0 \le \mathrm{Re}(\sigma ) \le 1/2\).

Moreover, for small values of t, it was shown in [28] that

$$\begin{aligned} \mathrm{{e}}^{\mathrm{{i}}U(\kappa ,t)} \approx - \left( {t\over 8}\right) ^{8\sigma -2} {\Gamma ^2\left( {1}-{2\sigma }\right) \over \Gamma ^2\left( {2\sigma }\right) }. \end{aligned}$$
(D.12)

In particular, the monodromy data of the related Fuchsian system for this solution are

$$\begin{aligned} (\sigma , \eta =0). \end{aligned}$$
(D.13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonelli, G., Grassi, A. & Tanzini, A. Seiberg–Witten theory as a Fermi gas. Lett Math Phys 107, 1–30 (2017). https://doi.org/10.1007/s11005-016-0893-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0893-z

Keywords

Mathematics Subject Classification

Navigation