Skip to main content
Log in

Dry-washes determine gene flow and genetic diversity in a common desert shrub

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

In deserts, many plant species exhibit a patchy spatial distribution within a harsh habitat matrix, where the likelihood of propagule dispersal among patches is uncertain, but may be promoted by landscape corridors or dispersal vectors.

Objectives

We examine the connectivity of a representative desert plant species (Acacia (Senegalia) greggii), and the ability of three major factors (animal dispersal agents, water flow along dry-washes, and climate) to facilitate dispersal within four watersheds in the Mojave National Preserve.

Methods

We genotyped 323 individuals sampled across 22 one-hectare sites using ten nuclear microsatellite markers.

Results

A hierarchical AMOVA revealed no significant differentiation among watersheds (F RT = 0.00, P > 0.10), and very little genetic structure among all sites (F ST = 0.03, P < 0.001), indicating regional connectivity. Mantel tests indicated distance along dry-washes best explained genetic distance between sites (r = 0.47, P < 0.05) when compared to Euclidean distance (P > 0.05), a distance measure based on rodent dispersal (P > 0.05), and a distance measure avoiding inhospitable climate (P > 0.05). An AIC comparison of generalized linear models found that within site genetic diversity (H E and allelic richness) and average relatedness were best explained by slope (which increases seed dispersal potential via water flow) and area of the upstream watershed (which determines the number of potential seed donors), rather than plant density or habitat suitability.

Conclusions

Together, these findings indicate that dry-washes are key landscape features that enhance dispersal and regional connectivity in this patchy desert plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of “least-cost” modelling as a functional landscape model. Landsc Urban Plan 64:233–247

    Article  Google Scholar 

  • Anderson PK (1986) Foraging range in mice and voles: the role of risk. Can J Zool 64:2645–2653

    Article  Google Scholar 

  • Arnaud J (2003) Metapopulation genetic structure and migration pathways in the land snail Helix aspersa: influence of landscape heterogeneity. Landscape Ecol 18:333–346

    Article  Google Scholar 

  • Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF (2001) M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31:24–28

    CAS  PubMed  Google Scholar 

  • Broquet T, Ray N, Petit E, Fryxell J, Burel F (2006) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21:877–889

    Article  Google Scholar 

  • Brown J (1979) Granivory in desert ecosystems. Annu Rev Ecol Syst 10:201–227

    Article  Google Scholar 

  • Brown J, Grover J, Davidson D, Lieberman G (1975) A preliminary study of seed predation in desert and montane habitats. Ecology 56:987–992

    Article  Google Scholar 

  • Brown J, Harney B (1993) Population and community ecology of heteromyid rodents in temperate habitats. In: Genoways H, Brown J (eds) Biology of the Heteromyidae. American Society of Mammalogists, Minneapolis, pp 618–650

    Google Scholar 

  • Bullock S (1976) Comparison of the distribution of seed and parent-plant populations. Southwest Nat 21:383–389

    Article  Google Scholar 

  • Castleberry SB, Ford WM, Wood PB, Castleberry NL, Mengak MT (2001) Movements of Allegheny woodrats in relation to timber harvesting. J Wildl Manag 65:148–156

    Article  Google Scholar 

  • Chambers J, MacMahon J (1994) A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annu Rev Ecol Syst 25:263–292

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Coe M, Coe C (1987) Large herbivores, acacia trees and bruchid beetles. S Afr J Sci 83:624–635

    Google Scholar 

  • Collevatti RG, Nabout JC, Diniz-Filho JAF (2011) Range shift and loss of genetic diversity under climate change in Caryocar brasiliense, a Neotropical tree species. Tree Genet Genomes 7:1237–1247

    Article  Google Scholar 

  • Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison AJM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Cullings KW (1992) Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol Ecol 1:233–240

    Article  CAS  Google Scholar 

  • Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dubey S, Pike DA, Shine R (2012) Predicting the impacts of climate change on genetic diversity in an endangered lizard species. Clim Change 117:319–327

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Ellstrand N (1992) Gene flow by pollen: implications for plant conservation genetics. Oikos 63:77–86

    Article  Google Scholar 

  • Ennos R (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity (Edinb) 72:250–259

    Article  Google Scholar 

  • Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS (2007) Optimizing dispersal and corridor models using landscape genetics. J Appl Ecol 44:714–724

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94

    Article  CAS  PubMed  Google Scholar 

  • Fllner S, Shmida A (1981) Why are adaptations for long-range seed dispersal rare in desert plants? Oecologia 51:133–144

    Article  Google Scholar 

  • Fox CW, Wallin WG, Bush ML, Czesak ME, Messina FJ (2012) Effects of seed beetles on the performance of desert legumes depend on host species, plant stage, and beetle density. J Arid Environ 80:10–16

    Article  Google Scholar 

  • Gaddis KD (2014) The population biology of dispersal and gene flow in the desert shrub Acacia (Senegalia) greggii A. Gray in the Mojave National Preserve. University of California, Los Angeles, pp 1–124

    Google Scholar 

  • Gaddis KD, Zukin HL, Dieterich IA, Braker E, Sork VL (2014) Effect of clonal reproduction on genetic structure in Pentaclethra macroloba (Fabaceae: Mimosoideae). Rev Biol Trop 62:443–454

    Article  PubMed  Google Scholar 

  • Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev Camb Philos Soc 80:413–443

    Article  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version. 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm

  • Guo Q, Rundel PW, Goodall DW (1998) Horizontal and vertical distribution of desert seed banks: patterns, causes, and implications. J Arid Environ 38:465–478

    Article  Google Scholar 

  • Gutterman Y (1994) Strategies of seed dispersal and germination in plants inhabiting deserts. Bot Rev 60:373–425

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc B Biol Sci 351:1291–1298

    Article  Google Scholar 

  • Hanski IM (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hanski IM, Simberloff D (1997) The metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski IA, Gilpin ME (eds) Metpopulation biology. Academic Press, San Diego, pp 5–26

    Chapter  Google Scholar 

  • Harrison S (1991) Local extinction in a metapopulation context: an empirical evaluation. Biol J Linn Soc 42:73–88

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683

    Article  CAS  PubMed  Google Scholar 

  • Johansson M, Primmer C, Sahlsten J, Merilä J (2005) The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Glob Change Biol 11:1664–1679

    Article  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241(80):1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Larcher W (2006) Altitudinal variation in flowering time of Lilac (Syringa vulgaris L.) in the Alps in relation to temperatures. Sitzungsberichte 212:3–18

    Google Scholar 

  • Levin D, Kerster H (1969) The dependence of bee-mediated pollen and gene dispersal upon plant density. Evolution 23:560–571

    Article  Google Scholar 

  • Levins R (1969) Some demographic and gentic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Levins R (1970) Extinction. Lect Math Life Sci 2:75–107

    Google Scholar 

  • Li JT, Yang J, Chen DC, Zhang XL, Tang ZS (2007) An optimized mini-preparation method to obtain high-quality genomic DNA from mature leaves of sunflower. Genet Mol Res 6:1064–1071

    CAS  PubMed  Google Scholar 

  • Little EL Jr (1971) Atlas of United States trees. Volume 1. Conifers and important hardwoods. Miscellaneous publication 1146. US Department of Agriculture, Forest Service, Washington, DC

  • Loveless M, Hamrick J (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Lowe W, Likens G, McPeek M, Buso D (2006) Linking direct and indirect data on dispersal: isolation by slope in a headwater stream salamander. Ecology 87:334–339

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mares M, Rosenzweig M (1978) Granivory in North and South American deserts: rodents, birds, and ants. Ecology 59:235–241

    Article  Google Scholar 

  • Marone L, Rossi BE, Horno ME (1998) Timing and spatial patterning of seed dispersal and redistribution in a South American warm desert. Plant Ecol 137:143–150

    Article  Google Scholar 

  • McArthur ED (1989) Breeding systems in shrubs. In: McKell CM (ed) The biology and utilization of shrubs. Academic Press, San Diego, pp 341–361

    Chapter  Google Scholar 

  • McRae B (2006) Isolation by resistance. Evolution 60:1551–1561

    Article  PubMed  Google Scholar 

  • Meney KA, Nielssen GM, Dixon KW (1994) Seed bank patterns in Restionaceae and Epacridaceae after wildfire in kwongan in southwestern Australia. J Veg Sci 5:5–12

    Article  Google Scholar 

  • Merritt DM, Wohl EE (2006) Plant dispersal along rivers fragmented by dams. River Res Appl 22:1–26

    Article  Google Scholar 

  • Mullins J, Ascensão F, Simões L, Andrade L, Santos-Reis M, Fernandes C (2014) Evaluating connectivity between Natura 2000 sites within the montado agroforestry system: a case study using landscape genetics of the wood mouse (Apodemus sylvaticus). Landscape Ecol 30:609–623

    Article  Google Scholar 

  • Nattero J, Malerba R, Medel R, Cocucci A (2011) Factors affecting pollinator movement and plant fitness in a specialized pollination system. Plant Syst Evol 296:77–85

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Ortego J, Riordan EC, Gugger PF, Sork VL (2012) Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol Ecol 21:3210–3223

    Article  PubMed  Google Scholar 

  • Parmenter RR, MacMahon JA, Vander Wall SB (1984) The measurement of granivory by desert rodents, birds and ants: a comparison of an energetics approach and a seed-dish technique. J Arid Environ 7:75–92

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire R (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the twenty-first international conference on machine learning, pp 655–662

  • Price MV, Joyner JW (1997) What resources are available to desert granivores: seed rain or soil seed bank? Ecology 78:764–773

    Google Scholar 

  • Ranjitkar S, Luedeling E, Shrestha KK, Guan K, Xu J (2013) Flowering phenology of tree rhododendron along an elevation gradient in two sites in the Eastern Himalayas. Int J Biometeorol 57:225–240

    Article  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version-1.2): population-genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Richards-Zawacki CL (2009) Effects of slope and riparian habitat connectivity on gene flow in an endangered Panamanian frog, Atelopus varius. Divers Distrib 15:796–806

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer RM, Roemer GW, Pollinger JP, Wayne RK (2009) Characterization of 15 tetranucleotide microsatellite markers in the ringtail (Bassariscus astutus). Mol Ecol Resour 9:210–212

    Article  CAS  PubMed  Google Scholar 

  • Sheng Y, Zheng W, Pei K, Ma K (2005) Genetic variation within and among populations of a dominant desert tree Haloxylon ammodendron (Amaranthaceae) in China. Ann Bot 96:245–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shohami D, Nathan R (2014) Fire-induced population reduction and landscape opening increases gene flow via pollen dispersal in Pinus halepensis. Mol Ecol 23:70–81

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Slavov GT, Leonardi S, Burczyk J, Adams WT, Strauss SH, Difazio SP (2009) Extensive pollen flow in two ecologically contrasting populations of Populus trichocarpa. Mol Ecol 18:357–373

    Article  CAS  PubMed  Google Scholar 

  • Smith F (1995) Den characteristics and survivorship of woodrats (Neotoma lepida) in the eastern Mojave Desert. Southwest Nat 40:366–372

    Google Scholar 

  • Sork VL, Nason J, Campbell D, Fernandez J (1999) Landscape approaches to historical and contemporary gene flow in plants. Trends Ecol Evol 14:219–224

    Article  PubMed  Google Scholar 

  • Sork VL, Smouse PE, Apsit V, Dyer R, Westfall R (2005) A two-generation analysis of pollen pool genetic structure in flowering dogwood, Cornus florida (Cornaceae), in the Missouri Ozarks. Am J Bot 92:262–271

    Article  CAS  PubMed  Google Scholar 

  • Sork VL, Smouse PE, Grivet D, Scofield DG (2015) Impact of asymmetric male and female gamete dispersal on allelic diversity and spatial genetic structure in valley oak (Quercus lobata Née). Evol Ecol 29:927–945

    Article  Google Scholar 

  • Sork VL, Waits L (2010) Contributions of landscape genetics—approaches, insights, and future potential. Mol Ecol 19:3489–3495

    Article  PubMed  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the “landscape” in landscape genetics. Heredity (Edinb) 98:128–142

    Article  CAS  Google Scholar 

  • Sullivan HL, Curtin CG, Reynolds CA, Cardiff SG (2001) The effect of topography on the foraging costs of heteromyid rodents. J Arid Environ 48:255–266

    Article  Google Scholar 

  • Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc Natl Acad Sci U S A 99:12923–12926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson PG, Smouse PE, Scofield DG, Sork VL (2014) What seeds tell us about birds: a multi-year analysis of acorn woodpecker foraging movements. Mov Ecol. doi:10.1186/2051-3933-2-12

    Google Scholar 

  • Tikka PM, Högmander H, Koski PS (2001) Road and railway verges serve as dispersal corridors for grassland plants. Landscape Ecol 16:659–666

    Article  Google Scholar 

  • Topping MG, Millar JS (1996) Foraging movements of female bushy-tailed wood rats (Neotoma cinerea). Can J Zool 74:798–801

    Article  Google Scholar 

  • Townsend P, Levey D (2005) An experimental test of whether habitat corridors affect pollen transfer. Ecology 86:466–475

    Article  Google Scholar 

  • Trénel P, Hansen MM, Normand S, Borchsenius F (2008) Landscape genetics, historical isolation and cross-Andean gene flow in the wax palm, Ceroxylon echinulatum (Arecaceae). Mol Ecol 17:3528–3540

    PubMed  Google Scholar 

  • Van Looy K, Meire P (2009) A conservation paradox for riparian habitats and river corridor species. J Nat Conserv 17:33–46

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Vanzant TI, Kinucan J, McGinty W (1997) Mixed-brush reestablishment following herbicide treatment in the Davis Mountains, west Texas. Texas J Agric Nat Resour 10:15–23

    Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Vellend M (2004) Parallel effects of land-use history on species diversity and genetic diversity of forest herbs. Ecology 85:3043–3055

    Article  Google Scholar 

  • Vignieri SN (2005) Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus). Mol Ecol 14:1925–1937

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Wang C, Yu J, Nie S, Han S, Zu Y, Chen C, Yuan S, Wang Q (2014) Model-based conservation planning of the genetic diversity of Phellodendron amurense Rupr due to climate change. Ecol Evol. doi:10.1002/ece3.1133

    PubMed  PubMed Central  Google Scholar 

  • Wang IJ, Savage WK, Shaffer HB (2009) Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol 18:1365–1374

    Article  PubMed  Google Scholar 

  • Went F (1948) Ecology of desert plants. I. Observations on germination in the Joshua Tree National Monument, California. Ecology 29:242–253

    Article  Google Scholar 

  • Werth S, Schödl M, Scheidegger C (2014) Dams and canyons lead to genetic isolation in a threatened riparian plant. Freshw Biol 59:2502–2515

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations, the theory of gene frequencies, 2nd edn. University of Chicago Press, Chicago

    Google Scholar 

  • Zedler PH (1981) Vegetation change in chaparral and desert communities in San Diego County, California. In: West DC, Shugart HH, Botkin DF (eds) Forest succession: concepts and application. Springer, New York, pp 406–430

    Chapter  Google Scholar 

  • Ziello C, Estrella N, Kostova M, Koch E, Menzel A (2009) Influence of altitude on phenology of selected plant species in the Alpine region (1971–2000). Clim Res 39:227–234

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank R. Coria, K. Dolphin, A. Salinas, T. Percival, and C. Huynh for tireless assistance in field and lab. Comments from S. Steele, P. Smouse, S. Hubbell, P. Rundel, T. Gillespie, G. Okin, T. La Doux, and J. Andre were especially helpful in improving the design and writing of this manuscript. We thank J. Pollinger and B. Faircloth for guidance during molecular marker development. This work was supported by a California Desert Research Grant from the Community Foundation, a Mildred E. Mathias Graduate Student Research Grant from the University of California Natural Reserve System, and a Vavra Research Grant from UCLA. KG was supported by the National Science Foundation Graduate Research Fellowship Program. PT was supported by the EPA STAR Fellowship. This work was performed at the University of California Natural Reserve System Sweeney Granite Mountains Desert Research Center and the Mojave National Preserve.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith D. Gaddis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaddis, K.D., Thompson, P.G. & Sork, V.L. Dry-washes determine gene flow and genetic diversity in a common desert shrub. Landscape Ecol 31, 2215–2229 (2016). https://doi.org/10.1007/s10980-016-0393-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0393-7

Keywords

Navigation