Skip to main content
Log in

Regression analysis of magnetized fluid flow in a discretely heated square enclosure in the partially filled with porous medium using RSM-CCD

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This computational study looks at the dynamics of free convection in a differentially heated square chamber occupied by ionized propane and saturated permeable partition. The modified Navier–Stokes equations and temperature equations are used to describe fluid and porous domain flow and heat transport phenomena. To solve these equations, the Galerkin finite element technique is used. Parametric adjustments are made for various heat source and sink lengths, Rayleigh number, Hartman number, and Darcy number. The results are quantitatively described in terms of the mean Nusselt number along the heated wall as the Rayleigh number increases (104 ≤ Ra ≤ 106). Streamlines and isotherms are used to visualize qualitative insights on these parametric changes. A comparative study is also performed without the porous media. Conclusive data demonstrate that using a permeable partition over a solid partition improves the mean Nusselt value by 26.28% at Ra = 104 and to a highest value of 56.5% at Ra = 106. Notably, this work presents a sensitivity analysis based on response surface methodology, demonstrating subtle connections between magnetohydrodynamics, Rayleigh number, and porous material effects. These findings provide important perspectives for improving thermal control and energy efficiency in advanced magnetohydrodynamic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(g \to\) :

Gravitational force (m s−2)

\(k \to\) :

Thermal conductivity (W K−1 m−1)

\(B_{0} \to\) :

Magnetic field (T)

\(H \to\) :

Heat function

\({\text{Ha}} \to\) :

Hartman number

\({\text{Ra}} \to\) :

Rayleigh number

\(\mu \to\) :

Viscosity (kg m−1 s−1)

\(\Pr \to\) :

Prandtl number

\(P \to\) :

Pressure (N m−2)

\({\text{Nu}}_{{{\text{avg}}}} \to\) :

Average Nusselt number

\(\sigma \to\) :

Electrical conductivity (S m−1)

\(u,v \to\) :

Velocity components (m s−1)

\(\xi \to\) :

Magnetic field angle

\(\alpha \to\) :

Thermal diffusivity (m2s−1)

\(Cp \to\) :

Specific heat (J K−1 kg−1)

\(L_{{\text{r}}} \to\) :

Length of enclosure (m)

\(\varepsilon \to\) :

Porosity

\(\beta \to\) :

Thermal expansion coefficient (K−1)

\(\rho \to\) :

Density (kg m−3)

\(T \to\) :

Temperature (K)

\({\text{Da}} \to\) :

Darcy number

\(\alpha \to\) :

Thermal diffusivity (m2 s−1)

\(\theta \to\) :

Temperature (K−1)

\(h \to\) :

Hot

\(c \to\) :

Cold

References

  1. Payvar P. Laminar heat transfer in the oil groove of a wet clutch. Int J Heat Mass Transf. 1991;34:1791–8. https://doi.org/10.1016/0017-9310(91)90154-7.

    Article  Google Scholar 

  2. Mistry H, Dey S, Bishnoi P, Castillo JL. Modeling of transient natural convection heat transfer in electric ovens. Appl Therm Eng. 2006;26:2448–56. https://doi.org/10.1016/j.applthermaleng.2006.02.007.

    Article  Google Scholar 

  3. Haese PM, Teubner MD. Heat exchange in an attic space. Int J Heat Mass Transf. 2002;45:4925–36. https://doi.org/10.1016/S0017-9310(02)00208-9.

    Article  Google Scholar 

  4. Aich W, Abbas W, Bilal Riaz M, Ahmed MA, Ben Said L, Ullah Khan S. Impacts of nanoscaled metallic particles on the dynamics of ternary Newtonian nanofluid laminar flow through convectively heated and radiated surface. Case Stud Therm Eng. 2024;53:103969. https://doi.org/10.1016/j.csite.2023.103969.

    Article  Google Scholar 

  5. Adnan, Nadeem A, Said NM. LSM analysis of thermal enhancement in KKL model-based unsteady nanofluid problem using CCM and slanted magnetic field effects. J Therm Anal Calorim. 2024;149:839–51. https://doi.org/10.1007/s10973-023-12801-1.

    Article  CAS  Google Scholar 

  6. Madhu J, Vinutha K, Kumar RN, Punith Gowda RJ, Prasannakumara BC, Alqahtani AS, Malik MY. Impact of solid–liquid interfacial layer in the nanofluid flow between stretching stationary disk and a rotating cone. Tribol Int. 2024;192:109187. https://doi.org/10.1016/j.triboint.2023.109187.

    Article  CAS  Google Scholar 

  7. Ananth Subray PV, Hanumagowda BN, Raju CSK, Varma SVK, Jagdish P, Yook SJ, Shah NA. Analytical analysis of inclined three-layered composite channel with cobalt ferrite nanoparticles and Hall current in Darcy medium. Propuls Power Res. 2023;12:523–38. https://doi.org/10.1016/j.jppr.2023.11.001.

    Article  Google Scholar 

  8. Beckermann C, Viskanta R, Ramadhyani S. Natural convection in vertical enclosures containing simultaneously fluid and porous layers. J Fluid Mech. 1988;186:257–84. https://doi.org/10.1017/S0022112088000138.

    Article  CAS  Google Scholar 

  9. Srilatha P, Kumar RSV, Kumar RN, Gowda RJP, Abdulrahman A, Prasannakumara BC. Impact of solid-fluid interfacial layer and nanoparticle diameter on Maxwell nanofluid flow subjected to variable thermal conductivity and uniform magnetic field. Heliyon. 2023;9: e21189. https://doi.org/10.1016/j.heliyon.2023.e21189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Albalawi KS, Karthik K, Bin-Asfour M, Alkahtani BST, Madhu J, Alazman I, Punith Gowda RJ. Impact of waste discharge concentration on fluid flow in inner stretched and outer stationary co-axial cylinders. Appl Therm Eng. 2024;244:122757. https://doi.org/10.1016/j.applthermaleng.2024.122757.

    Article  Google Scholar 

  11. Cyriac T, Hanumagowda BN, Umeshaiah M, Kumar V, Chohan JS, Naveen Kumar R, Karthik K. Performance of rough secant slider bearing lubricated with couple stress fluid in the presence of magnetic field. Mod Phys Lett B. 2023. https://doi.org/10.1142/S0217984924501409.

    Article  Google Scholar 

  12. Song YQ, Hamid A, Khan MI, Gowda RJP, Kumar RN, Prasannakumara BC, Khan SU, Khan MI, Malik MY. Solar energy aspects of gyrotactic mixed bioconvection flow of nanofluid past a vertical thin moving needle influenced by variable Prandtl number. Chaos Solitons Fractals. 2021;151: 111244. https://doi.org/10.1016/j.chaos.2021.111244.

    Article  Google Scholar 

  13. Benos LTh, Kakarantzas SC, Sarris IE, Grecos AP, Vlachos NS. Analytical and numerical study of MHD natural convection in a horizontal shallow cavity with heat generation. Int J Heat Mass Transf. 2014;75:19–30. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.062.

    Article  Google Scholar 

  14. Raja MAZ, Shoaib M, Tabassum R, Khan MI, Gowda RJP, Prasannakumara BC, Malik MY, Xia WF. Intelligent computing for the dynamics of entropy optimized nanofluidic system under impacts of MHD along thick surface. Int J Mod Phys B. 2021;35:2150269. https://doi.org/10.1142/S0217979221502696.

    Article  CAS  Google Scholar 

  15. Abbas N, Malik MY, Nadeem S. Transportation of magnetized micropolar hybrid nanomaterial fluid flow over a Riga curface surface. Comput Methods Programs Biomed. 2020;185: 105136. https://doi.org/10.1016/j.cmpb.2019.105136.

    Article  PubMed  Google Scholar 

  16. Abbas N, Nadeem S, Malik MY. Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions. Phys A. 2020;551: 124083. https://doi.org/10.1016/j.physa.2019.124083.

    Article  CAS  Google Scholar 

  17. Venkatachalappa M, Do Y, Sankar M. Effect of magnetic field on the heat and mass transfer in a vertical annulus. Int J Eng Sci. 2011;49:262–78. https://doi.org/10.1016/j.ijengsci.2010.12.002.

    Article  Google Scholar 

  18. Srilatha P, Gowda RJP, Madhu J, Nagaraja KV, Gamaoun F, Kumar RSV, Karthik K. Designing a solid–fluid interface layer and artificial neural network in a nanofluid flow due to rotating rough and porous disk. J Therm Anal Calorim. 2024;149:867–78. https://doi.org/10.1007/s10973-023-12706-z.

    Article  CAS  Google Scholar 

  19. Prakash SB, Chandan K, Karthik K, Devanathan S, Kumar RSV, Nagaraja KV, Prasannakumara BC. Investigation of the thermal analysis of a wavy fin with radiation impact: an application of extreme learning machine. Phys Scr. 2023;99: 015225. https://doi.org/10.1088/1402-4896/ad131f.

    Article  Google Scholar 

  20. Xu YJ, Shah F, Khan MI, Naveen Kumar R, Punith Gowda RJ, Prasannakumara BC, Malik MY, Khan SU. New modeling and analytical solution of fourth grade (non-Newtonian) fluid by a stretchable magnetized Riga device. Int J Mod Phys C. 2022;33:2250013. https://doi.org/10.1142/S0129183122500139.

    Article  CAS  Google Scholar 

  21. Islam Z, Azad AK, Hasan MdJ, Hossain R, Rahman MM. Unsteady periodic natural convection in a triangular enclosure heated sinusoidally from the bottom using CNT-water nanofluid. Res Eng. 2022;14: 100376. https://doi.org/10.1016/j.rineng.2022.100376.

    Article  CAS  Google Scholar 

  22. Benos L, Sarris IE. Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int J Heat Mass Transf. 2019;130:862–73. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.004.

    Article  CAS  Google Scholar 

  23. Rashad AM, Chamkha AJ, Ismael MA, Salah T. Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation. J Heat Transf. 2018. https://doi.org/10.1115/1.4039213.

    Article  Google Scholar 

  24. Gibanov N, Sheremet M. Unsteady natural convection in a cubical cavity with a triangular heat source. Int J Numer Meth Heat Fluid Flow. 2017;27:1795–813. https://doi.org/10.1108/HFF-06-2016-0234.

    Article  Google Scholar 

  25. Tayebi T, Chamkha AJ. Effects of various configurations of an inserted corrugated conductive cylinder on MHD natural convection in a hybrid nanofluid-filled square domain. J Therm Anal Calorim. 2021;143:1399–411. https://doi.org/10.1007/s10973-020-10206-y.

    Article  CAS  Google Scholar 

  26. Alsabery AI, Tayebi T, Chamkha AJ, Hashim I. Effects of non-homogeneous nanofluid model on natural convection in a square cavity in the presence of conducting solid block and corner heater. Energies. 2018;11:2507. https://doi.org/10.3390/en11102507.

    Article  CAS  Google Scholar 

  27. Chabani I, Mebarek-Oudina F, Ismail AAI. MHD flow of a hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle. Micromachines. 2022;13:224. https://doi.org/10.3390/mi13020224.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mebarek-Oudina F, Fares R, Aissa A, Lewis RW, Abu-Hamdeh NH. Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall. Int Commun Heat Mass Transf. 2021;125: 105279. https://doi.org/10.1016/j.icheatmasstransfer.2021.105279.

    Article  CAS  Google Scholar 

  29. Mansour MA, Gorla RSR, Siddiqa S, Rashad AM, Salah T. Unsteady MHD natural convection flow of a nanofluid inside an inclined square cavity containing a heated circular obstacle. Int J Nonlinear Sci Numer Simul. 2023;24:37–55. https://doi.org/10.1515/ijnsns-2020-0138.

    Article  CAS  Google Scholar 

  30. Zhang J, Anjal HA, Msmali A, Wang F, Nofal TA, Selim MM. Heat transfer of nanomaterial with involve of MHD through an enclosure. Case Stud Therm Eng. 2022;30: 101747. https://doi.org/10.1016/j.csite.2021.101747.

    Article  Google Scholar 

  31. Ferhi M, Djebali R, Mebarek-Oudina F, Abu-Hamdeh NH, Abboudi S. Magnetohydrodynamic free convection through entropy generation scrutiny of eco-friendly nanoliquid in a divided L-shaped heat exchanger with lattice boltzmann method simulation. J Nanofluids. 2022;11:99–112. https://doi.org/10.1166/jon.2022.1819.

    Article  Google Scholar 

  32. Oke AS, Prasannakumara BC, Mutuku WN, Gowda RJP, Juma BA, Kumar RN, Bada OI. Exploration of the effects of Coriolis force and thermal radiation on water-based hybrid nanofluid flow over an exponentially stretching plate. Sci Rep. 2022;12:21733. https://doi.org/10.1038/s41598-022-21799-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karthik K, Madhukesh JK, Kiran S, Nagaraja KV, Prasannakumara BC, Fehmi G. Impacts of thermophoretic deposition and thermal radiation on heat and mass transfer analysis of ternary nanofluid flow across a wedge. Int J Modell Simul. 2024. https://doi.org/10.1080/02286203.2023.2298234.

    Article  Google Scholar 

  34. Pekmen Geridonmez B, Oztop HF. Natural convection in a cavity filled with porous medium under the effect of a partial magnetic field. Int J Mech Sci. 2019;161–162:105077. https://doi.org/10.1016/j.ijmecsci.2019.105077.

    Article  Google Scholar 

  35. Chandra Shekar B, Haritha C, Kishan N. Magnetohydrodynamic convection in a porous square cavity filled by a nanofluid with viscous dissipation effects. Proc Inst Mech Eng Part E J Process Mech Eng. 2019;233:474–88. https://doi.org/10.1177/0954408918765314.

    Article  Google Scholar 

  36. Haq RU, Soomro FA, Mekkaoui T, Al-Mdallal QM. MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium. Int J Heat Mass Transf. 2018;121:1168–78. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.063.

    Article  Google Scholar 

  37. Bani-Fwaz MZ, Adnan A, Mahmood Z, Bilal M, EI-Zahhar AA, Khan I, Niazai S. Computational investigation of thermal process in radiated nanofluid modulation influenced by nanoparticles (Al2O3) and molecular (H2O) diameters. J Comput Des Eng. 2024. https://doi.org/10.1093/jcde/qwae011.

    Article  Google Scholar 

  38. Punith Gowda RJ, Sarris IE, Naveen Kumar R, Prasannakumara BC. Chapter two - impact of nanoparticle aggregation and melting heat transfer phenomena on magnetically triggered nanofluid flow: artificial intelligence–based Levenberg–Marquardt approach. In: Muhammad Ali H, editor. Advanced materials-based fluids for thermal systems. Elsevier; 2024. p. 13–34.

    Chapter  Google Scholar 

  39. Tong TW, Subramanian E. Natural convection in rectangular enclosures partially filled with a porous medium. Int J Heat Fluid Flow. 1986;7:3–10. https://doi.org/10.1016/0142-727X(86)90033-0.

    Article  Google Scholar 

  40. Sathe SB, Lin WQ, Tong TW. Natural convection in enclosures containing an insulation with a permeable fluid-porous interface. Int J Heat Fluid Flow. 1988;9:389–95. https://doi.org/10.1016/0142-727X(88)90005-7.

    Article  CAS  Google Scholar 

  41. Chen F, Chen CF. Convection in superposed fluid and porous layers. J Fluid Mech. 1992;234:97–119. https://doi.org/10.1017/S0022112092000715.

    Article  CAS  Google Scholar 

  42. Nimmy P, Nagaraja KV, Srilatha P, Karthik K, Sowmya G, Kumar RSV, Khan U, Hussain SM, Hendy AS, Ali MR. Implication of radiation on the thermal behavior of a partially wetted dovetail fin using an artificial neural network. Case Stud Therm Eng. 2023;51: 103552. https://doi.org/10.1016/j.csite.2023.103552.

    Article  Google Scholar 

  43. Punith Gowda RJ, Naveen Kumar R, Kumar R, Prasannakumara BC. Three-dimensional coupled flow and heat transfer in non-newtonian magnetic nanofluid: an application of Cattaneo-Christov heat flux model. J Magn Magn Mater. 2023;567:170329. https://doi.org/10.1016/j.jmmm.2022.170329.

    Article  CAS  Google Scholar 

  44. Punith Gowda RJ, Prasannakumara BC, Shehzad SA, Sahar F. Blasius and Sakiadis flow of titania-copper-water based hybrid nanofluid flow: an artificial neural network modelling. Sci Iran. 2023. https://doi.org/10.24200/sci.2023.61937.7566.

    Article  Google Scholar 

  45. Gowda RJP, Kumar RN, Rauf A, Prasannakumara BC, Shehzad SA. Magnetized flow of sutterby nanofluid through cattaneo-christov theory of heat diffusion and stefan blowing condition. Appl Nanosci. 2023;13:585–94. https://doi.org/10.1007/s13204-021-01863-y.

    Article  CAS  Google Scholar 

  46. Gowda RJP, Kumar RN, Khan U, Prasannakumara BC, Zaib A, Ishak A, Galal AM. Dynamics of nanoparticle diameter and interfacial layer on flow of non-Newtonian (Jeffrey) nanofluid over a convective curved stretching sheet. Int J Mod Phys B. 2022;36:2250224. https://doi.org/10.1142/S0217979222502241.

    Article  CAS  Google Scholar 

  47. Kim SJ, Choi CY. Convective heat transfer in porous and overlying fluid layers heated from below. Int J Heat Mass Transf. 1996;39:319–29. https://doi.org/10.1016/0017-9310(95)00118-S.

    Article  CAS  Google Scholar 

  48. Mehboob H, Maqbool K, Ellahi R, Sait SM. Transport of Jeffrey fluid in a rectangular slit of the microchannel under the effect of uniform reabsorption and a porous medium. Commun Theor Phys. 2021;73: 115003. https://doi.org/10.1088/1572-9494/ac2054.

    Article  CAS  Google Scholar 

  49. Bhatti MM, Bég OA, Ellahi R, Abbas T. Natural convection non-Newtonian EMHD dissipative flow through a microchannel containing a non-Darcy porous medium: homotopy perturbation method study. Qual Theory Dyn Syst. 2022;21:97. https://doi.org/10.1007/s12346-022-00625-7.

    Article  Google Scholar 

  50. Alamri SZ, Ellahi R, Shehzad N, Zeeshan A. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq. 2019;273:292–304. https://doi.org/10.1016/j.molliq.2018.10.038.

    Article  CAS  Google Scholar 

  51. Luo C, Rothan YA, Alazwari MA, Abu-Hamdeh NH, Selim MM. Multi-physics investigation within a porous media with involving magnetic field impact on nanofluid. J Petrol Sci Eng. 2021;207: 109173. https://doi.org/10.1016/j.petrol.2021.109173.

    Article  CAS  Google Scholar 

  52. Zakirov TR, Khramchenkov MG. Effect of pore space heterogeneity on the adsorption dynamics in porous media at various convection-diffusion and reaction conditions: a lattice Boltzmann study. J Petrol Sci Eng. 2022;212: 110300. https://doi.org/10.1016/j.petrol.2022.110300.

    Article  CAS  Google Scholar 

  53. Javed S, Deb N, Saha S. Natural convection and entropy generation inside a square chamber divided by a corrugated porous partition. Res Eng. 2023;18: 101053. https://doi.org/10.1016/j.rineng.2023.101053.

    Article  Google Scholar 

  54. Chamkha AJ, Ismael MA. Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf Part A Appl. 2014;65:1089–113. https://doi.org/10.1080/10407782.2013.851560.

    Article  CAS  Google Scholar 

  55. Alsabery A, Saleh H, Arbin N, Hashim I. Unsteady natural convection in a square cavity partially filled with porous media using a thermal non-equilibrium model. Governing. 2015;50:12.

    Google Scholar 

  56. Aghajani Delavar M, Satari E. Study of free convection in enclosure partially filled with porous media. Int J Math Comput Sci. 2015;1:214–26.

    Google Scholar 

  57. Astanina MS, Sheremet M, Umavathi CJ. Unsteady natural convection in a partially porous cavity having a heat-generating source using local thermal non-equilibrium model. Int J Numer Meth Heat Fluid Flow. 2018;29:1902–19. https://doi.org/10.1108/HFF-06-2018-0338.

    Article  Google Scholar 

  58. Mehryan SAM, Ghalambaz M, Izadi M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J Therm Anal Calorim. 2019;135:1047–67. https://doi.org/10.1007/s10973-018-7380-y.

    Article  CAS  Google Scholar 

  59. Hadidi N, Rebhi R, Bennacer R, Menni Y, Ameur H, Lorenzini G, Gepreel KA, Ahmad H. Thermosolutal natural convection across an inclined square enclosure partially filled with a porous medium. Res Phys. 2021;21: 103821. https://doi.org/10.1016/j.rinp.2021.103821.

    Article  Google Scholar 

  60. Omara A, Touiker M, Bourouis A. Thermosolutal natural convection in a partly porous cavity with sinusoidal wall heating and cooling. Int J Numer Meth Heat Fluid Flow. 2021;32:1115–44. https://doi.org/10.1108/HFF-01-2021-0062.

    Article  Google Scholar 

  61. Venkatadri K. Visualization of thermo-magnetic natural convective heat flow in a square enclosure partially filled with a porous medium using bejan heatlines and Hooman energy flux vectors: hybrid fuel cell simulation. Geoenergy Sci Eng. 2023;224: 211591. https://doi.org/10.1016/j.geoen.2023.211591.

    Article  CAS  Google Scholar 

  62. Umadevi P, Nithyadevi N. Convection in a sinusoidally heated square enclosure utilizing Ag−water nanofluid with heat generating solid body. Int J Mech Sci. 2017;131–132:712–21. https://doi.org/10.1016/j.ijmecsci.2017.08.015.

    Article  Google Scholar 

  63. Akbarzadeh M, Rashidi S, Bovand M, Ellahi R. A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel. J Mol Liq. 2016;220:1–13. https://doi.org/10.1016/j.molliq.2016.04.058.

    Article  CAS  Google Scholar 

  64. Alsulami MD, Abdulrahman A, Kumar RN, Punith Gowda RJ, Prasannakumara BC. Three-dimensional swirling flow of nanofluid with nanoparticle aggregation kinematics using modified Krieger-Dougherty and Maxwell-Bruggeman models: a finite element solution. Mathematics. 2023;11:2081. https://doi.org/10.3390/math11092081.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number  RGP-2-155-1444.

Author information

Authors and Affiliations

Authors

Contributions

PVAS, BNH, and SVKV developed the theoretical formalism and writing–original draft preparation. ASA and MYM performed the numerical simulations. ASA, PVAS, and YMM performed validation, formal analysis and investigation. All authors discussed the results and contributed to the final manuscript. PVAS and BNH supervised the findings of this work.

Corresponding author

Correspondence to P. V. Ananth Subray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananth Subray, P.V., Hanumagowda, B.N., Varma, S.V.K. et al. Regression analysis of magnetized fluid flow in a discretely heated square enclosure in the partially filled with porous medium using RSM-CCD. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13058-y

Keywords

Navigation