Skip to main content
Log in

Magnetized flow of sutterby nanofluid through cattaneo-christov theory of heat diffusion and stefan blowing condition

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Stefan blowing phenomenon in electrically conducting Sutterby material flow over stretchable rotating disk is demonstrated in this research. Cattaneo-Christov (CC) model of energy diffusion is adopted to analyze the heat transmission. Buongiorno model is carried out to evaluate the involvement of nanoparticles. The formulated system of partial differential expressions is re-structured by the enactment of similarity functions. Runge–Kutta-Fehlberg (RKF) fourth-fifth order process has been executed to communicate the solution of velocity, thermal and solutal fields. The velocity, concentration, thermal fields, skin friction, rate of mass and heat transportations are explored for the embedded non-dimensional parameters graphically. Result reveals that the rise in Stefan blowing factor leads to an enhancement in radial and tangential velocities gradients. The velocity of nanomaterial is reduced by the incrementing material parameter values. The augmenting magnetic parameter values reduced the liquid velocity but improves the temperature. The thermophoretic force and Brownian motion involvement resulted the higher thermal field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\((u,w)\) :

Velocity components \(\left( {ms^{ - 1} } \right)\)

\(C_{w}\) :

Surface concentration

\((x,r)\) :

Directions \(\left( m \right)\)

\(T_{w}\) :

Surface temperature \(\left( K \right)\)

\(C_{\infty }\) :

Ambient concentration

\(\Lambda\) :

Shear rate

\(\beta_{0}\) :

Magnetic field \((m^{(1/2)} kg^{(1/2)} s^{( - 2)} )\)

\(\sigma_{e}\) :

Electrical conductivity \(\left( {kg^{ - 1} m^{ - 3} c^{2} s} \right)\)

\(\mu\) :

Dynamic viscosity \((kg\;s^{ - 1} m^{ - 1} )\)

\(\rho\) :

Density of liquid \((kgm^{ - 3} )\)

\(C_{p}\) :

Specific heat \((K^{ - 1} s^{ - 2} m^{2} )\)

\(k_{o}\) :

Thermal conductivity \((W/mK)\)

\(p\) :

Pressure

\(Sh_{r}\) :

Local Sherwood number

\(C\) :

Concentration

\(T\) :

Temperature \(\left( K \right)\)

\(D_{T}\) :

Thermophoretic diffusion co-efficient \((m^{2} s^{ - 1} )\)

\(\tau_{1}\) :

Ratio of nanoparticles heat capacity and the base fluid

\(T_{\infty }\) :

Ambient temperature \(\left( K \right)\)

\(\mu_{0}\) :

Viscosity at low shear rate

\(M\) :

Magnetic parameter

\(\,C_{f\,\theta }\) :

Skin friction in tangential direction

\(N\) :

Dimensionless parameter

\(D_{B}\) :

Brownian diffusion \((m^{2} s^{ - 1} )\)

\(A_{1}\) :

Rilvin Erickson tensor

\(\varepsilon\) :

Material parameter

\(\Omega\) :

Angular velocity \((s^{ - 1} )\)

\(\tau_{0}\) :

Heat flux relaxation time \((s)\)

\(b\) :

Characteristic time \((s)\)

\(\lambda\) :

Thermal relaxation time parameter

\(Nt\) :

Thermophoresis parameter

\(Nb\) :

Parameter of Brownian movement

\(Sc\) :

Schmidt number

\(A\) :

Stretching constraint

\(f_{w}\) :

Stefan blowing factor

\(C_{f\,r}\) :

Skin friction in radial direction

\({\text{Re}}_{r}\) :

Local Reynolds number

\(\Pr\) :

Prandtl number

\(Nu_{r}\) :

Local Nusselt number

References

  • Ahmad MW, McCash LB, Shah Z, Nawaz R (2020) Cattaneo-Christov heat flux model for second grade nanofluid flow with Hall effect through entropy generation over stretchable rotating disk. Coatings 10:610

    Article  CAS  Google Scholar 

  • Alamri SZ, Ellahi R, Shehzad N, Zeeshan A (2019) Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq 273:292–304

    Article  CAS  Google Scholar 

  • Ali B, Hussain S, Nie Y, Hussein AK, Habib D (2021) Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model. Powder Technol 377:439–452

    Article  CAS  Google Scholar 

  • Amirsom NA, Uddin MJ, Ismail AIM (2019) MHD boundary layer bionanoconvective non-Newtonian flow past a needle with Stefan blowing. Heat Transf-Asian Res 48:727–743

    Article  Google Scholar 

  • Dero S, Uddin MJ, Rohni AM (2019) Stefan blowing and slip effects on unsteady nanofluid transport past a shrinking sheet: Multiple solutions. Heat Transf-Asian Res 48:2047–2066

    Article  Google Scholar 

  • Doh DH, Muthtamilselvan M, Swathene B, Ramya E (2020) Homogeneous and heterogeneous reactions in a nanofluid flow due to a rotating disk of variable thickness using HAM. Math Comput Simulat 168:90–110

    Article  Google Scholar 

  • Gireesha BJ, Kumar KG, Krishnamurthy MR, Manjunatha S, Rudraswamy N (2019) Impact of ohmic heating on MHD mixed convection flow of Casson fluid by considering cross diffusion effect. Nonlinear Eng 8:380–388

    Article  Google Scholar 

  • Gowda RJP, Kumar RN, Aldalbahi A, Issakhov A, Prasannakumara BC, Rahimi-Gorji M, Rahaman M (2021) Thermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/downward moving disk. Surf Inter 22:100864

    Google Scholar 

  • Gowda RJP, Kumar NR, Prasannakumara BC, Nisar KS (2021) Emphasis on unsteady dynamics of bioconvective hybrid nanofluid flow over an upward-downward moving rotating disk. Numer Methods Partial Differ Equ. https://doi.org/10.1002/num.22680

    Article  Google Scholar 

  • Gowda RJP, Al-Mubaddel FS, Kumar RN, Prasannakumara BC, Issakhov A, Rahimi-Gorji M, Al-Turki YA (2021c) Computational modelling of nanofluid flow over a curved stretching sheet using Koo-Kleinstreuer and Li (KKL) correlation and modified Fourier heat flux model. Chaos Sol Frac 145:110774

    Article  Google Scholar 

  • Hayat T, Ahmad S, Khan MI, Alsaedi A (2018) Modeling chemically reactive flow of Sutterby nanofluid by a rotating disk in presence of heat generation/absorption. Commun Theoret Phys 69:569

    Article  CAS  Google Scholar 

  • Hayat T, Masood F, Qayyum S, Alsaedi A (2020) Sutterby fluid flow subject to homogeneous–heterogeneous reactions and nonlinear radiation. Phys A Stat Mech Its Appl 544:123439

    Article  CAS  Google Scholar 

  • Hayat T, Khan SA, Khan MI, Momani S, Alsaedi A (2020) Cattaneo-Christov (CC) heat flux model for nanomaterial stagnation point flow of Oldroyd-B fluid. Comput Methods Programs Biomed 187:105247

    Article  CAS  Google Scholar 

  • Hayat T, Bibi F, Khan AA, Alsaedi A (2021) Entropy production minimization and non-Darcy resistance within wavy motion of Sutterby liquid subject to variable physical characteristics. J Therm Anal Calorim 143:2215–2252

    Article  CAS  Google Scholar 

  • Imran N, Javed M, Sohail M, Thounthong P, Abdelmalek Z (2020) Theoretical exploration of thermal transportation with chemical reactions for Sutterby fluid model obeying peristaltic mechanism. J Mater Res Technol 9:7449–7459

    Article  CAS  Google Scholar 

  • Khan JA, Mustafa M, Hayat T, Turkyilmazoglu M, Alsaedi A (2017) Numerical study of nanofluid flow and heat transfer over a rotating disk using Buongiorno’s model. Int J Numer Methods Heat Fluid Flow 27:221–234

    Article  Google Scholar 

  • Khan MI, Qayyum S, Hayat T (2019) Stratified flow of Sutterby fluid with homogeneous-heterogeneous reactions and Cattaneo-Christov heat flux. Int J Numer Methods Heat Fluid Flow 29:2977–2992

    Article  Google Scholar 

  • Khan M, Ahmed J, Ali W (2021) Thermal analysis for radiative flow of magnetized Maxwell fluid over a vertically moving rotating disk. J Therm Anal Calorim 143:4081–4094

    Article  CAS  Google Scholar 

  • Krishnamurthy MR, Prasannakumara BC, Gireesha BJ, Gorla RSR (2016) Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Eng Sci Technol Int J 19:53–61

    Google Scholar 

  • Kumar KG, Gireesha BJ, Gorla RSR (2018) Flow and heat transfer of dusty hyperbolic tangent fluid over a stretching sheet in the presence of thermal radiation and magnetic field. Int J Mech Mater Eng 13:1–11

    Google Scholar 

  • Latiff NA, Uddin MU, Ismail AIM (2016) Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk. Propul Power Res 5:267–278

    Article  Google Scholar 

  • Lund LA, Omar Z, Raza J, Khan I, Sherif ESM (2020) Effects of Stefan blowing and slip conditions on unsteady MHD Casson nanofluid flow over an unsteady shrinking sheet: Dual solutions. Symmetry 12:487

    Article  CAS  Google Scholar 

  • Nawaz M (2020) Role of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol. Phys Stat Mech Appl 537:122447

    Article  CAS  Google Scholar 

  • Rauf A, Abbas Z, Shehzad SA (2019) Chemically reactive hydromagnetic flow over a stretchable oscillatory rotating disk with thermal radiation and heat source/sink: A numerical study. Heat Transf Res 50:1495–1512

    Article  Google Scholar 

  • Reddy MG, Gowda RP, Kumar RN, Prasannakumara BC, Kumar KG (2021) Analysis of modified Fourier law and melting heat transfer in a flow involving carbon nanotubes. Proc Inst Mech Eng Part E J Process Mech Eng 2021:09544089211001353

    Google Scholar 

  • Sajid T, Tanveer S, Sabir Z, Guirao JLG (2020) Impact of activation energy and temperature-dependent heat source/sink on Maxwell-Sutterby fluid. Math Probl Eng 2020:5251804

    Google Scholar 

  • Shah F, Khan MI, Hayat T, Momani S, Khan MI (2020) Cattaneo-Christov heat flux (CC model) in mixed convective stagnation point flow towards a Riga plate. Comput Methods Programs Biomed 187:105564

  • Shehzad SA, Abbasi FM, Hayat T, Alsaedi A (2016) Cattaneo-Christov heat flux model for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection. J Mol Liq 224:274–278

    Article  CAS  Google Scholar 

  • Shehzad SA, Reddy MG, Rauf A, Abbas Z (2020) Bioconvection of Maxwell nanofluid under the influence of double diffusive Cattaneo-Christov theories over isolated rotating disk. Phys Scr 95:045207

  • Turkyilmazoglu M (2012) Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk. Int J Eng Sci 51:233–240

    Article  Google Scholar 

  • Turkyilmazoglu M (2020) Nanoliquid film flow due to a moving substrate and heat transfer. Eur Phys J plus 135:781

    Article  Google Scholar 

  • Turkyilmazoglu M (2020) Suspension of dust particles over a stretchable rotating disk and two-phase heat transfer. Int J Multiph Flow 127:103260

    Article  CAS  Google Scholar 

  • Waqas M, Hayat T, Farooq M, Shehzad SA, Alsaedi A (2016) Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. J Mol Liq 220:642–648

    Article  CAS  Google Scholar 

  • Xiong PY, Hamid A, Chu YM, Khan MI, Gowda RJP, Kumar RN, Prasannakumara BC, Qayyum S (2021) Dynamics of multiple solutions of Darcy-Forchheimer saturated flow of Cross nanofluid by a vertical thin needle point. Eur Phys J plus 136:315

    Article  CAS  Google Scholar 

  • Zohra FT, Uddin MJ, Basir MF, Ismail AIM (2020) Magnetohydrodynamic bio-nano-convective slip flow with Stefan blowing effects over a rotating disc. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 234:83–97

    Google Scholar 

Download references

Funding

There is no funders to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowda, R.J.P., Kumar, R.N., Rauf, A. et al. Magnetized flow of sutterby nanofluid through cattaneo-christov theory of heat diffusion and stefan blowing condition. Appl Nanosci 13, 585–594 (2023). https://doi.org/10.1007/s13204-021-01863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01863-y

Keywords

Navigation