Skip to main content
Log in

Review on various types of battery thermal management systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In today’s competitive electric vehicle (EV) market, battery thermal management system (BTMS) designs are aimed toward operating batteries at optimal temperature range during charging and discharging process and meet promised performance and lifespan with zero tolerance on safety. As batteries primary function is to provide electrical power to operate electrical motors, it should possess inbuilt functions such as heating, cooling, insulation and ventilation to survive and emerge among competitors. This literature reviews various methods of cooling battery systems and necessity of thermal management of batteries for electric vehicle. Recent publications were summarized starting with conventional air cooling, liquid cooling and hybrid cooling which includes advanced phase change materials (PCM) and heat pipes. Also, eleven review articles were classified and reviewed in respective cooling strategies. In addition, experimental and numerical studies with flow path and geometrical optimization which enhances battery performance is given priority with key performance metrics or battery state of health (SOH) parameters such as reduction of maximum temperature (Tmax) and temperature difference among individual cells (ΔT) were explained in detail. Research gaps identified have been described in detail which will be eyeopener among research community and industry. Having a primary refrigerated liquid cooling system along with nanofluid-enhanced heat pipes as secondary cooling would be the most efficient way of cooling as both cabin and battery optimal operating temperature requirements fall in same range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

Similar content being viewed by others

References

  1. Maheswari L, Sivakumaran N, Balasubramanian KR, Saravana IG. A unique control strategy to improve the life cycle of the battery and to reduce the thermal runaway for electric vehicle applications. J Therm Anal Calorim. 2020;141:2541–53. https://doi.org/10.1007/s10973-020-09673-0.

    Article  CAS  Google Scholar 

  2. Molaeimanesh GR, Mousavi-Khoshdel SM, Nemati AB. Experimental analysis of commercial LiFePO4 battery life span used in electric vehicle under extremely cold and hot thermal conditions. J Therm Anal Calorim. 2021;143:3137–46. https://doi.org/10.1007/s10973-020-09272-z.

    Article  CAS  Google Scholar 

  3. Chen WC, Li JD, Shu CM, Wang YW. Effects of thermal hazard on 18650 lithium-ion battery under different states of charge. J Therm Anal Calorim. 2015;121:525–31. https://doi.org/10.1007/s10973-015-4672-3.

    Article  CAS  Google Scholar 

  4. Xu G, Zhang Y, Lou S, Gu J, Huang X. Prediction and prevention of over-temperature risk of Li-ion power batteries based on the critical heat transfer coefficient and intervention time. Appl Therm Eng. 2022;206:118100. https://doi.org/10.1016/j.applthermaleng.2022.118100.

    Article  CAS  Google Scholar 

  5. Yan J, Wang Q, Li K, Sun J. Numerical study on the thermal performance of a composite board in battery thermal management system. Appl Therm Eng. 2016;106:131–40. https://doi.org/10.1016/j.applthermaleng.2016.05.187.

    Article  Google Scholar 

  6. Giammichele L, D’Alessandro V, Falone M, Ricci R. Thermal behavior assessment and electrical characterisation of a cylindrical Lithium-ion battery using infrared thermography. Appl Therm Eng. 2022;205:117974. https://doi.org/10.1016/j.applthermaleng.2021.117974.

    Article  CAS  Google Scholar 

  7. Liu G, Ouyang M, Lu L, Li J, Han X. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. J Therm Anal Calorim. 2014;116:1001–10. https://doi.org/10.1007/s10973-013-3599-9.

    Article  CAS  Google Scholar 

  8. Mahboubi D, Gavzan JI, Saidi MH, Ahmadi N. Developing an electro-thermal model to determine heat generation and thermal properties in a lithium-ion battery. J Therm Anal Calorim. 2022;147:12253–67. https://doi.org/10.1007/s10973-022-11422-4.

    Article  CAS  Google Scholar 

  9. Xie Y, Guo H, Li W, Zhang Y, Chen B, Zhang K. Improving battery thermal behavior and consistency by optimizing structure and working parameter. Appl Therm Eng. 2021;196:117281. https://doi.org/10.1016/j.applthermaleng.2021.117281.

    Article  Google Scholar 

  10. Hakeem Akinlabi AA, Solyali D. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: a review. Rene Sustain Ener Rev. 2020;125:109815. https://doi.org/10.1016/j.rser.2020.109815.

    Article  CAS  Google Scholar 

  11. Deng Y, Feng C, Jiaqiang E, Zhu H, Chen J, Wen M, Yin H. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review. Appl Therm Eng. 2018;142:10–29. https://doi.org/10.1016/j.applthermaleng.2018.06.043.

    Article  CAS  Google Scholar 

  12. Weixiong Wu, Wang S, Wei Wu, Chen K, Hong S, Lai Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers Manag. 2019;182:262–81. https://doi.org/10.1016/j.enconman.2018.12.051.

    Article  Google Scholar 

  13. Esfe HM, Afrand M. A review on fuel cell types and the application of nanofluid in their cooling. J Therm Anal Calorim. 2020;140:1633–54. https://doi.org/10.1007/s10973-019-08837-x.

    Article  CAS  Google Scholar 

  14. Sarvar-Ardeh S, Rashidi S, Rafee R, Karimi N. A review on the applications of micro-/mini-channels for battery thermal management. J Therm Anal Calorim. 2023;148:7959–79. https://doi.org/10.1007/s10973-023-12092-6.

    Article  CAS  Google Scholar 

  15. Reheem ZA, Al-Mousawi FN, Dhaidan NS, Kokz SA. Advances in heat pipe technologies for different thermal systems applications: a review. J Therm Anal Calorim. 2022;2022(147):13011–26. https://doi.org/10.1007/s10973-022-11660-6.

    Article  CAS  Google Scholar 

  16. Raj CR, Suresh S, Bhavsar RR. Recent developments in thermo-physical property enhancement and applications of solid solid phase change materials. J Therm Anal Calorim. 2020;139:3023–49. https://doi.org/10.1007/s10973-019-08703-w.

    Article  CAS  Google Scholar 

  17. Sanker SB, Baby R. Phase change material based thermal management of lithium ion batteries: a review on thermal performance of various thermal conductivity enhancers. J Energy Storage. 2022;50:104606. https://doi.org/10.1016/j.est.2022.104606.

    Article  Google Scholar 

  18. Hamed MM, El-Tayeb A, Moukhtar I, El Dein AZ, Abdelhameed EH. A review on recent key technologies of lithium-ion battery thermal management: external cooling systems. Res Eng. 2022;16:100703. https://doi.org/10.1016/j.rineng.2022.100703.

    Article  CAS  Google Scholar 

  19. Al-Zareer M, Dincer I, Rosen MA. A review of novel thermal management systems for batteries. Int J Energy Res. 2018;42:3182–205. https://doi.org/10.1002/er.4095.

    Article  Google Scholar 

  20. Wang X, Liu S, Zhang Y, Lv S, Ni H, Deng Y, Yuan Y. A review of the power battery thermal management system with different cooling, heating and coupling system. Energy. 2022;15:1963. https://doi.org/10.3390/en15061963.

    Article  CAS  Google Scholar 

  21. Çetin İ, Sezici E, Karabulut M, Avci E, Polat F. A comprehensive review of battery thermal management systems for electric vehicles. Proc Ins Mech Eng Part E. 2023;237(3):989–1004. https://doi.org/10.1177/09544089221123975.

    Article  Google Scholar 

  22. Thakur AK, Prabakaran R, Elkadeem MR, Sharshir SW, Müslüm A, Wang C, Zhao W, Hwang JY, Saidur R. A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles. J Energy Storage. 2020;32:101771. https://doi.org/10.1016/j.est.2020.101771.

    Article  Google Scholar 

  23. Fayaz H, Afzal A, Samee ADM, Soudagar MEM, Mujtaba MA, Jilte RD, Tariqul Islam MD, Agbulut U, Ahameed Saleel C. Optimization of thermal and structural design in lithium-ion batteries to obtain energy efficient battery thermal management system (BTMS): a critical review. Arch Comput Methods Eng. 2022;29:129–94. https://doi.org/10.1007/s11831-021-09571-0.

    Article  CAS  PubMed  Google Scholar 

  24. Lu M, Zhang X, Ji J, Xu X, Zhang Y. Research progress on power battery cooling technology for electric vehicles. J Energy Storage. 2020;27:101155. https://doi.org/10.1016/j.est.2019.101155.

    Article  Google Scholar 

  25. Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. App Therm Eng. 2019;149:192–212. https://doi.org/10.1016/j.applthermaleng.2018.12.020.

    Article  Google Scholar 

  26. Murugan M, Saravanan A, Elumalai PV, Murali G, Dhineshbabu NR, Pramod K, Afzal A. Thermal management system of lithium-ion battery packs for electric vehicles: an insight based on bibliometric study. J Energy Storage Part A. 2022;52:104723. https://doi.org/10.1016/j.est.2022.104723.

    Article  Google Scholar 

  27. Cao W, Qiu Y, Peng P, Jiang F. A full-scale electrical-thermal-fluidic coupling model for Li-ion battery energy storage systems. Appl Therm Eng. 2021;185:116360. https://doi.org/10.1016/j.applthermaleng.2020.116360.

    Article  Google Scholar 

  28. Zhuang W, Liu Z, Su H, Chen G. An intelligent thermal management system for optimized lithium-ion battery pack. Appl Therm Eng. 2021;189:116767. https://doi.org/10.1016/j.applthermaleng.2021.116767.

    Article  Google Scholar 

  29. Nguyen TD, Tsutsui W, Williams A, Deng J, Robert B, Chen J, Siegmund T. Design and thermomechanical analysis of a cell-integrated, tapered channel heat sink concept for prismatic battery cells. Appl Therm Eng. 2021;189:116676. https://doi.org/10.1016/j.applthermaleng.2021.116676.

    Article  Google Scholar 

  30. Wang N, Li C, Li W, Huang M, Qi D. Effect analysis on performance enhancement of a novel air cooling battery thermal management system with spoilers. Appl Therm Eng. 2021;192:116932. https://doi.org/10.1016/j.applthermaleng.2021.116932.

    Article  Google Scholar 

  31. Wang M, Teng S, Xi H, Li Y. Cooling performance optimization of air-cooled battery thermal management system. Appl Therm Eng. 2021;196:117242. https://doi.org/10.1016/j.applthermaleng.2021.117242.

    Article  Google Scholar 

  32. Rizk R, Louahlia H, Gualous H, Scheatzel P, Alcicek G. Experimental analysis on Li-ion battery local heat distribution. J Therm Anal Calorim. 2019;138:1557–71. https://doi.org/10.1007/s10973-019-08283-9.

    Article  CAS  Google Scholar 

  33. Lyu C, Song Y, Wang L, Ge Y, Xiong R, Lan T. A new structure optimization method for forced air-cooling system based on the simplified multi-physics model. Appl Therm Eng. 2021;198:117455. https://doi.org/10.1016/j.applthermaleng.2021.117455.

    Article  Google Scholar 

  34. Wang C, Xi W, Wang M. Investigation on forced air-cooling strategy of battery thermal management system considering the inconsistency of battery cells. Appl Therm Eng. 2022;214:118841. https://doi.org/10.1016/j.applthermaleng.2022.118841.

    Article  Google Scholar 

  35. Ma R, Ren Y, Wu Z, Xie S, Chen K, Wu W. Optimization of an air-cooled battery module with novel cooling channels based on silica cooling plates. Appl Therm Eng. 2022;213:118650. https://doi.org/10.1016/j.applthermaleng.2022.118650.

    Article  CAS  Google Scholar 

  36. Fan Y, Zhan D, Tan X, Lyu P, Rao J. Optimization of cooling strategies for an electric vehicle in high-temperature environment. Appl Therm Eng. 2021;195:117088. https://doi.org/10.1016/j.applthermaleng.2021.117088.

    Article  Google Scholar 

  37. Wang YW, Jiang JM, Chung YH, Chen WC, Shu CM. Forced-air cooling system for large-scale lithium-ion battery modules during charge and discharge processes. J Therm Anal Calorim. 2019;135:2891–901. https://doi.org/10.1007/s10973-018-7646-4.

    Article  CAS  Google Scholar 

  38. Milyani AH, Ajour MN, Alhumade HA, AbhuHamdeh NH. Thermal management of lithium battery packs affected by phase change materials as the heat stored in the residential heating unit. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11661-5.

    Article  Google Scholar 

  39. Behi H, Behi M, Karimi D, Jaguemont J, Ghanbarpour M, Behnia M, Berecibar M, Mierlo JV. Heat pipe air-cooled thermal management system for lithium-ion batteries: high power applications. Appl Therm Eng. 2021;183(2):116240. https://doi.org/10.1016/j.applthermaleng.2020.116240.

    Article  Google Scholar 

  40. Wang Z, Mao N, Jiang F. Study on the effect of spacing on thermal runaway propagation for lithium-ion batteries. J Therm Anal Calorim. 2020;140:2849–63. https://doi.org/10.1007/s10973-019-09026-6.

    Article  CAS  Google Scholar 

  41. Behi H, Karimi D, Jaguemont J, Gandoman FH, Kalogiannis T, Berecibar M, Mierlo JV. Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications. Energy. 2021;224:120165. https://doi.org/10.1016/j.energy.2021.120165.

    Article  Google Scholar 

  42. Qin P, Liao M, Mei X, Sun J, Wang Q. The experimental and numerical investigation on a hybrid battery thermal management system based on forced-air convection and internal finned structure. App Therm Eng. 2021;195:117212. https://doi.org/10.1016/j.applthermaleng.2021.117212.

    Article  Google Scholar 

  43. Wang S, Ji S, Zhu S. A comparative study of cooling schemes for laminated lithium-ion batteries. App Therm Eng. 2021;182:116040. https://doi.org/10.1016/j.applthermaleng.2020.116040.

    Article  CAS  Google Scholar 

  44. Behi H, Karimi D, Behi M, Ghanbarpour M, Jaguemont J, Sokkeh MA, Gandoman FH, Berecibar M, Mierlo JV. A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Appl Therm Eng. 2020;174:115280. https://doi.org/10.1016/j.applthermaleng.2020.115280.

    Article  Google Scholar 

  45. Shah K, Drake SJ, Wetz DA, Ostanek JK, Miller SP, Heinzel JM, Jain A. Modeling of steady-state convective cooling of cylindrical Li-ion cells. J Power Sources. 2014;258:374–81. https://doi.org/10.1016/j.jpowsour.2014.01.115.

    Article  CAS  Google Scholar 

  46. Darcovich K, MacNeil DD, Recoskie S, Cadic Q, Ilinca F. Comparison of cooling plate configurations for automotive battery pack thermal management. Appl Therm Eng. 2019;155:185–95. https://doi.org/10.1016/j.applthermaleng.2019.03.146.

    Article  Google Scholar 

  47. Benabdelaziz K, Lebrouhi B, Maftah A, Mohammed M. Novel external cooling solution for electric vehicle battery pack. Energy Rep. 2020;6(3):262–72. https://doi.org/10.1016/j.egyr.2019.10.043.

    Article  Google Scholar 

  48. Deng T, Zhang G, Ran Y, Liu P. Thermal performance of lithium ion battery pack by using cold plates. J Appl Therm Eng. 2019;160:114088. https://doi.org/10.1016/j.applthermaleng.2019.114088.

    Article  Google Scholar 

  49. Ding B, Qi ZH, Mao CS, Gong L, Liu XL. Numerical investigation on cooling performance of PCM/cooling plate hybrid system for power battery with variable discharging conditions. J Therm Anal Calorim. 2020;141:625–33. https://doi.org/10.1007/s10973-020-09611-0.

    Article  CAS  Google Scholar 

  50. Xu X, Tong G, Li R. Numerical study and optimizing on cold plate splitter for lithium battery thermal management system. Appl Therm Eng. 2020;167:114787. https://doi.org/10.1016/j.applthermaleng.2019.114787.

    Article  Google Scholar 

  51. Jiaqiang E, Xu S, Deng Y, Zhu H, Zuo W, Wang H, Chen J, Peng Q, Zhang Z. Investigation on thermal performance and pressure loss of the fluid cold-plate used in thermal management system of the battery pack. Appl Therm Eng. 2018;145:552–68. https://doi.org/10.1016/j.applthermaleng.2018.09.048.

    Article  Google Scholar 

  52. Zhao R, Wen D, Lai Z, Li W, Ye M, Zhuge W, Zhang M. Performance analysis and optimization of a novel cooling plate with non-uniform pin-fins for lithium battery thermal management. Appl Therm Eng. 2021;194:117022. https://doi.org/10.1016/j.applthermaleng.2021.117022.

    Article  Google Scholar 

  53. Mohammed AH, Esmaeeli R, Aliniagerdroudbari H, Alhadri M, Hashemi SR, Nadkarni G, Farhad S. Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway. Appl Therm Eng. 2019;160:114106. https://doi.org/10.1016/j.applthermaleng.2019.114106.

    Article  CAS  Google Scholar 

  54. Huang Y, Wei C, Fang Y. Numerical investigation on optimal design of battery cooling plate for uneven heat generation conditions in electric vehicles. Appl Therm Eng. 2022;2022(211):118476. https://doi.org/10.1016/j.applthermaleng.2022.118476.

    Article  Google Scholar 

  55. Lyu C, Song Y, Yang D, Wang W, Zhu S, Ge Y, Wang L. Surrogate model of liquid cooling system for lithium-ion battery using extreme gradient boosting. Appl Therm Eng. 2022;213:118675. https://doi.org/10.1016/j.applthermaleng.2022.118675.

    Article  Google Scholar 

  56. Pang X, Huo Y, Fang H, Rao Z. Analysis of temperature uniformity of electric vehicle battery system with swirling flow strengthened heat transfer. Appl Therm Eng. 2021;193:116995. https://doi.org/10.1016/j.applthermaleng.2021.116995.

    Article  Google Scholar 

  57. Li X, Zhou D, Zhang G, Wang C, Lin R, Zhong Z. Experimental investigation of the thermal performance of silicon cold plate for battery thermal management system. Appl Therm Eng. 2019;155:331–40. https://doi.org/10.1016/j.applthermaleng.2019.04.007.

    Article  CAS  Google Scholar 

  58. Zhang H, Li C, Zhang R, Lin Y, Fang H. Thermal analysis of a 6s4p Lithium-ion battery pack cooled by cold plates based on a multi-domain modeling framework. Appl Therm Eng. 2020;173:115216. https://doi.org/10.1016/j.applthermaleng.2020.115216.

    Article  CAS  Google Scholar 

  59. Huang Y, Mei P, Lu Y, Huang R, Yu X, Chen Z, Roskilly AP. A novel approach for lithium-ion battery thermal management with streamline shape mini channel cooling plates. Appl Therm Eng. 2019;157:113623. https://doi.org/10.1016/j.applthermaleng.2019.04.033.

    Article  Google Scholar 

  60. Kalkan O, Celen A, Bakirci K, Dalkilic AS. Experimental investigation of thermal performance of novel cold plate design used in a Li-ion pouch-type battery. Appl Therm Eng. 2021;191:116885. https://doi.org/10.1016/j.applthermaleng.2021.116885.

    Article  Google Scholar 

  61. Bandhauer TM, Garimella S. Passive, internal thermal management system for batteries using microscale liquid–vapor phase change. Appl Therm Eng. 2013;61(2):756–69. https://doi.org/10.1016/j.applthermaleng.2013.08.004.

    Article  Google Scholar 

  62. Wu N, Li X, Ouyang N, Zhang WC. Mini-channel liquid cooling system for large-sized lithium-ion battery packs by integrating step-allocated coolant scheme. Appl Therm Eng. 2022;214:118798. https://doi.org/10.1016/j.applthermaleng.2022.118798.

    Article  Google Scholar 

  63. Jiang W, Zhao J, Rao Z. Heat transfer performance enhancement of liquid cold plate based on mini V-shaped rib for battery thermal management. Appl Therm Eng. 2021;189:116729. https://doi.org/10.1016/j.applthermaleng.2021.116729.

    Article  Google Scholar 

  64. Li Y, Zhou Z, Wu WT. Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate. Appl Therm Eng. 2019;147:829–40. https://doi.org/10.1016/j.applthermaleng.2018.11.009.

    Article  CAS  Google Scholar 

  65. Yang W, Zhou F, Liu Y, Xu S, Chen X. Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery. Appl Therm Eng. 2021;188:116649. https://doi.org/10.1016/j.applthermaleng.2021.116649.

    Article  Google Scholar 

  66. Lan C, Xu J, Qiao Y, Ma Y. Thermal management for high power lithium-ion battery by minichannel aluminum tubes. App Therm Engn. 2016;101:284–92. https://doi.org/10.1016/j.applthermaleng.2016.02.070.

    Article  CAS  Google Scholar 

  67. Afzal A, Samee ADA, Razak RKA, Ramis MK. Thermal management of modern electric vehicle battery systems (MEVBS). J Therm Anal Calorim. 2021;144:1271–85. https://doi.org/10.1007/s10973-020-09606-x.

    Article  CAS  Google Scholar 

  68. Larrañaga-Ezeiza M, Vertiz G, Arroiabe PF, Martinez-Agirre M, Berasategi J. A novel direct liquid cooling strategy for electric vehicles focused on pouch type battery cells. Appl Therm Eng. 2022;216:118869. https://doi.org/10.1016/j.applthermaleng.2022.118869.

    Article  Google Scholar 

  69. Mohammadian KS, He TA, Zhang Y. Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes. J Power Sources. 2015;293:458–66. https://doi.org/10.1016/j.jpowsour.2015.05.055.

    Article  CAS  Google Scholar 

  70. Kaabinejadian A, Ahmadi HA, Moghimi M. Investigation of porous media effects on lithium-ion battery thermal management. J Therm Anal Calorim. 2020;141:1619–33. https://doi.org/10.1007/s10973-020-09661-4.

    Article  CAS  Google Scholar 

  71. Chung Y, Kim MS. Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles. Ener Convers Manag. 2019;196:105–16. https://doi.org/10.1016/j.enconman.2019.05.083.

    Article  Google Scholar 

  72. Rui X, Feng X, Wang H, Yang H, Zhang Y, Wan M, Wei Y, Ouyang M. Synergistic effect of insulation and liquid cooling on mitigating the thermal runaway propagation in lithium-ion battery module. Appl Therm Eng. 2021;199:117521. https://doi.org/10.1016/j.applthermaleng.2021.117521.

    Article  Google Scholar 

  73. Zhang Z, Fu L, Sheng L, Ye W, Sun Y. Method of liquid-cooled thermal control for a large-scale pouch lithium-ion battery. Appl Therm Eng. 2022;211:118417. https://doi.org/10.1016/j.applthermaleng.2022.118417.

    Article  CAS  Google Scholar 

  74. Chen Z, Yang S, Pan M, Xu J. Experimental investigation on thermal management of lithium-ion battery with roll bond liquid cooling plate. Appl Therm Eng. 2022;206:118106. https://doi.org/10.1016/j.applthermaleng.2022.118106.

    Article  CAS  Google Scholar 

  75. Xie J, Wang Y, He S, Zhang G, Liu X, Yang X. A simple cooling structure with precisely-tailored liquid cooling plate for thermal management of large battery module. Appl Therm Eng. 2022;212:118575. https://doi.org/10.1016/j.applthermaleng.2022.118575.

    Article  CAS  Google Scholar 

  76. Malik M, Dincer I, Rosen MA, Mathew M, Fowler M. Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling. Appl Therm Eng. 2018;129:472–81. https://doi.org/10.1016/j.applthermaleng.2017.10.029.

    Article  CAS  Google Scholar 

  77. Panchal S, Khasow R, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Appl Therm Eng. 2017;122:80–90. https://doi.org/10.1016/j.applthermaleng.2017.05.010.

    Article  CAS  Google Scholar 

  78. Chen S, Zhang G, Zhu J, Feng X, Wei X, Ouyang M, Dai H. Multi-objective optimization design and experimental investigation for a parallel liquid cooling-based lithium-ion battery module under fast charging. Appl Therm Eng. 2022;211:1359–118503. https://doi.org/10.1016/j.applthermaleng.2022.118503.

    Article  CAS  Google Scholar 

  79. Zhang F, Gou H, Xie C, He Y, Zhu Y, Lu F, Liang B, Xiao K. A new stepped-channel liquid cooling plate thermal management system combined with composite phase change materials. Appl Therm Eng. 2022;211:1359–61. https://doi.org/10.1016/j.applthermaleng.2022.118439.

    Article  Google Scholar 

  80. Fan Y, Wang Z, Fu T. Multi-objective optimization design of lithium-ion battery liquid cooling plate with double-layered dendritic channels. Appl Therm Eng. 2021;199:117541. https://doi.org/10.1016/j.applthermaleng.2021.117541.

    Article  CAS  Google Scholar 

  81. Ding Y, Wei M, Liu R. Channel parameters for the temperature distribution of a battery thermal management system with liquid cooling. Appl Therm Eng. 2021;186:116494. https://doi.org/10.1016/j.applthermaleng.2020.116494.

    Article  CAS  Google Scholar 

  82. Dong F, Cheng Z, Zhu J, Song D, Ni J. Investigation and optimization on cooling performance of a novel double helix structure for cylindrical lithium-ion batteries. Appl Therm Eng. 2021;189:116758. https://doi.org/10.1016/j.applthermaleng.2021.116758.

    Article  CAS  Google Scholar 

  83. Xu Y, Li X, Liu X, Wang Y, Wu X, Zhou D. Experiment investigation on a novel composite silica gel plate coupled with liquid-cooling system for square battery thermal management. Appl Therm Eng. 2021;184:116217. https://doi.org/10.1016/j.applthermaleng.2020.116217.

    Article  CAS  Google Scholar 

  84. Li Y, Guo H, Qi F, Guo Z, Li M, Tjernberg LB. Investigation on liquid cold plate thermal management system with heat pipes for LiFePO4 battery pack in electric vehicles. Appl Therm Eng. 2021;185:116382. https://doi.org/10.1016/j.applthermaleng.2020.116382.

    Article  CAS  Google Scholar 

  85. Su S, Li W, Li Y, Garg A, Gao L, Zhou Q. Multi-objective design optimization of battery thermal management system for electric vehicles. Appl Therm Eng. 2021;196:117235. https://doi.org/10.1016/j.applthermaleng.2021.117235.

    Article  Google Scholar 

  86. Zhang T, Gao Q, Gu Y, Li Y. Studies on thermal management of lithium-ion battery using non-metallic heat exchanger. Appl Therm Eng. 2021;182:1359–4311. https://doi.org/10.1016/j.applthermaleng.2020.116095.

    Article  CAS  Google Scholar 

  87. Wang H, Tao T, Xu J, Mei X, Liu X, Gou P. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries. Appl Therm Eng. 2020;178:115591. https://doi.org/10.1016/j.applthermaleng.2020.115591.

    Article  CAS  Google Scholar 

  88. Lu Y, Wang J, Liu F, Liu Y, Wang F, Yang F, Lu D, Jia Y. Performance optimisation of Tesla valve-type channel for cooling lithium-ion batteries. Appl Therm Eng. 2022;212:118583. https://doi.org/10.1016/j.applthermaleng.2022.118583.

    Article  CAS  Google Scholar 

  89. Jiaqiang E, Han D, Qiu A, Zhu H, Deng Y, Chen J, Zhao X, Zuo W, Wang H, Chen J, Peng Q. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system. Appl Therm Eng. 2018;132:508–20. https://doi.org/10.1016/j.applthermaleng.2017.12.115.

    Article  Google Scholar 

  90. Chen X, Zhou F, Yang W, Gui Y, Zhang Y. A hybrid thermal management system with liquid cooling and composite phase change materials containing various expanded graphite contents for cylindrical lithium-ion batteries. Appl Therm Eng. 2022;200:1359–4311. https://doi.org/10.1016/j.applthermaleng.2021.117702.

    Article  CAS  Google Scholar 

  91. Zhang W, Liang Z, Yin X, Ling G. Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling. Appl Therm Eng. 2021;184:116380. https://doi.org/10.1016/j.applthermaleng.2020.116380.

    Article  CAS  Google Scholar 

  92. Liu Z, Huang J, Cao M, Jiang G, Yan Q, Hu J. Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling. Appl Therm Eng. 2021;185:116415. https://doi.org/10.1016/j.applthermaleng.2020.116415.

    Article  CAS  Google Scholar 

  93. Molaeimanesh GR, MirfallahNasiry SR, Dahmardeh M. Impact of configuration on the performance of a hybrid thermal management system including phase change material and water-cooling channels for Li-ion batteries. Appl Therm Eng. 2020;181:116028. https://doi.org/10.1016/j.applthermaleng.2020.116028.

    Article  CAS  Google Scholar 

  94. Cao J, Wu Y, Ling Z, Fang X, Zhang Z. Upgrade strategy of commercial liquid-cooled battery thermal management system using electric insulating flexible composite phase change materials. Appl Therm Eng. 2021;199:117562. https://doi.org/10.1016/j.applthermaleng.2021.117562.

    Article  Google Scholar 

  95. Zhou Z, Lv Y, Qu J, Sun Q, Grachev D. Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling. Appl Therm Eng. 2021;196:117300. https://doi.org/10.1016/j.applthermaleng.2021.117300.

    Article  CAS  Google Scholar 

  96. Tian Z, Gan W, Zhang X, Gu B, Yang L. Investigation on an integrated thermal management system with battery cooling and motor waste heat recovery for electric vehicle. Appl Therm Eng. 2018;136:16–27. https://doi.org/10.1016/j.applthermaleng.2018.02.093.

    Article  Google Scholar 

  97. Lyu Y, Siddique ARM, Majid SH, Biglarbegian M, Gadsden SA, Mahmud S. Electric vehicle battery thermal management system with thermoelectric cooling. Ener Reports. 2019;5:822–7. https://doi.org/10.1016/j.egyr.2019.06.016.

    Article  Google Scholar 

  98. Manzoor AT, Saghir MZ. Heat transfer enhancement in multiple pipes configuration using different fluid mixtures: a numerical approach. Int J Thermofluids. 2021;10:100088. https://doi.org/10.1016/j.ijft.2021.100088.

    Article  CAS  Google Scholar 

  99. Wiriyasart S, Hommalee C, Sirikasemsuk S, Prurapark R, Naphon P. Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Stud Therm Eng. 2020;18:100583. https://doi.org/10.1016/j.csite.2020.100583.

    Article  Google Scholar 

  100. Dilbaz F, Selimefendigil F, Öztop HF. Lithium-ion battery module performance improvements by using nanodiamond-Fe3O4 water/ethylene glycol hybrid nanofluid and fins. J Therm Anal Calorim. 2022;147:10625–35. https://doi.org/10.1007/s10973-022-11269-9.

    Article  CAS  Google Scholar 

  101. Kiani M, Ansari M, Arshadi AA, Houshfar E, Ashjaee M. Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach. J Therm Anal Calorim. 2020;2020(141):1703–15. https://doi.org/10.1007/s10973-020-09403-6.

    Article  CAS  Google Scholar 

  102. Hong SH, Jang DS, Park S, Yun S, Kim Y. Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles. Appl Therm Eng. 2020;173:1359–4311. https://doi.org/10.1016/j.applthermaleng.2020.115213.

    Article  CAS  Google Scholar 

  103. Guo J, Jiang F. A novel electric vehicle thermal management system based on cooling and heating of batteries by refrigerant. Energy Convers Manag. 2021;237:114145. https://doi.org/10.1016/j.enconman.2021.114145.

    Article  Google Scholar 

  104. Yao M, Gan Y, Liang J, Dong D, Ma L, Liu J, Luo Q, Li Y. Performance simulation of a heat pipe and refrigerant-based lithium-ion battery thermal management system coupled with electric vehicle air-conditioning. Appl Therm Eng. 2021;191:1359–4311. https://doi.org/10.1016/j.applthermaleng.2021.116878.

    Article  CAS  Google Scholar 

  105. Liu Y, Gao Q, Wang G, Zhang T, Zhang Y. Experimental study on active control of refrigerant emergency spray cooling of thermal abnormal power battery. Appl Therm Eng. 2021;182:116172. https://doi.org/10.1016/j.applthermaleng.2020.116172.

    Article  CAS  Google Scholar 

  106. Wang YF, Wu JT. Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles. Energy Convers Manag. 2020;207:112569. https://doi.org/10.1016/j.enconman.2020.112569.

    Article  CAS  Google Scholar 

  107. Shen M, Gao Q. Structure design and effect analysis on refrigerant cooling enhancement of battery thermal management system for electric vehicles. Appl Therm Eng. 2020;32:101940. https://doi.org/10.1016/j.est.2020.101940.

    Article  Google Scholar 

  108. Liu T, Hu J, Tang Q, Zhu X, Liu Y, Wang X. Investigation on fine water mist battery thermal management system for thermal runaway control. Appl Therm Eng. 2022;211:118474. https://doi.org/10.1016/j.applthermaleng.2022.118474.

    Article  Google Scholar 

  109. Zhou Y, Wang Z, Gao H, Wan X, Qiu H, Zhang J, Di J. Inhibitory effect of water mist containing composite additives on thermally induced jet fire in lithium-ion batteries. J Therm Anal Calorim. 2022;147:2171–85. https://doi.org/10.1007/s10973-021-10673-x.

    Article  CAS  Google Scholar 

  110. Liu J, Fan Y, Xie Q. Feasibility study of a novel oil-immersed battery cooling system: Experiments and theoretical analysis. Appl Therm Eng. 2022;208:118251. https://doi.org/10.1016/j.applthermaleng.2022.118251.

    Article  Google Scholar 

  111. Liu J, Fan Y, Yang M, Wang J, Xie Q. Experimental investigation on the cooling effectiveness of an oil-immersed battery cooling system. J Therm Anal Calorim. 2022;147:14841–57. https://doi.org/10.1007/s10973-022-11577-0.

    Article  CAS  Google Scholar 

  112. Patil MS, Seo JH, Lee MY. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management. Energy Convers Manag. 2021;229:113715. https://doi.org/10.1016/j.enconman.2020.113715.

    Article  CAS  Google Scholar 

  113. Tan X, Lyu P, Fan Y, Rao J, Ouyang K. Numerical investigation of the direct liquid cooling of a fast-charging lithium-ion battery pack in hydrofluoroether. Appl Therm Eng. 2021;196:117279. https://doi.org/10.1016/j.applthermaleng.2021.117279.

    Article  CAS  Google Scholar 

  114. Yangs Y, Yang L, Du X, Yang Y. Pre-cooling of air by water spray evaporation to improve thermal performance of lithium battery pack. Appl Therm Eng. 2019;163:114401. https://doi.org/10.1016/j.applthermaleng.2019.114401.

    Article  Google Scholar 

  115. Shahid S, Agelin-Chaab M. Development of hybrid thermal management techniques for battery packs. Appl Therm Eng. 2021;186:116542. https://doi.org/10.1016/j.applthermaleng.2020.116542.

    Article  Google Scholar 

  116. Zhu Y, Wang Z, Bian H, Wang J, Bai W, Gao T, Bai J, Zhou Y. Critical conditions for the thermal runaway propagation of lithium-ion batteries in air and argon environments. J Therm Anal Calorim. 2022;147:13699–710. https://doi.org/10.1007/s10973-022-11575-2.

    Article  CAS  Google Scholar 

  117. Akbarzadeh M, Kalogiannis T, Jaguemont H, Jin L, Behi H, Karimi D, Beheshti H, Mierlo JV, Berecibar M. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module. Appl Therm Eng. 2021;198:117503. https://doi.org/10.1016/j.applthermaleng.2021.117503.

    Article  Google Scholar 

  118. Chen D, Jiang J, Kim GH, Yang C, Pesaran A. Comparison of different cooling methods for lithium ion battery cells. Appl Therm Eng. 2016;94:846–54. https://doi.org/10.1016/j.applthermaleng.2015.10.015.

    Article  CAS  Google Scholar 

  119. Mokashi I, Khan SA, Abdullah NA, Bin Azami MH, Afzal A. Maximum temperature analysis in a Li-ion battery pack cooled by different fluids. J Therm Anal Calorim. 2020;141:2555–71. https://doi.org/10.1007/s10973-020-10063-9.

    Article  CAS  Google Scholar 

  120. Wang S, Li Y, Li YZ, Mao Y, Zhang Y, Guo W, Zhong M. A forced gas cooling circle packaging with liquid cooling plate for the thermal management of Li-ion batteries under space environment. Appl Therm Eng. 2017;123:929–39. https://doi.org/10.1016/j.applthermaleng.2017.05.159.

    Article  CAS  Google Scholar 

  121. Son YW, Kim T, Lu TJ, Chang SM. On thermally managing lithium-ion battery cells by air-convection aspirated in tetrahedral lattice porous cold plates. Appl Therm Eng. 2021;189:116711. https://doi.org/10.1016/j.applthermaleng.2021.116711.

    Article  Google Scholar 

  122. Afzal A, Mohammed SA, Jilte RD, Tariqul Islam MD, Muthu Manokar M, Abdul Razak K. Battery thermal management: an optimization study of parallelized conjugate numerical analysis using Cuckoo search and artificial bee colony algorithm. Int J Heat Mass Trans. 2021;166:120798. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120798.

    Article  Google Scholar 

  123. Temel UN, Somek K, Parlak M. Transient thermal response of phase change material embedded with graphene nanoplatelets in an energy storage unit. J Therm Anal Calorim. 2018;133:907–18. https://doi.org/10.1007/s10973-018-7161-7.

    Article  CAS  Google Scholar 

  124. Ling Z, Li S, Cai C, Lin S, Fang X, Zhang Z. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability. App Therm Eng. 2021;193:1359–4311. https://doi.org/10.1016/j.applthermaleng.2021.117002.

    Article  CAS  Google Scholar 

  125. Liu J, Fan Y, Xie Q. Temperature mitigation effect of phase change material on overcharging lithium-ion batteries: an experimental study. J Therm Anal Calorim. 2022;147:5153–63. https://doi.org/10.1007/s10973-021-10875-3.

    Article  CAS  Google Scholar 

  126. Putra N, Sandi AF, Ariantara B, Abdullah N, Indra Mahlia TM. Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles. Case Stud Therm Eng. 2020;21:100655. https://doi.org/10.1016/j.csite.2020.100655.

    Article  Google Scholar 

  127. Chen K, Hou J, Song M, Wang S, Wu S, Zhang Y. Design of battery thermal management system based on phase change material and heat pipe. Appl Therm Eng. 2021;188:116665. https://doi.org/10.1016/j.applthermaleng.2021.116665.

    Article  Google Scholar 

  128. Kshetrimayum KS, Yoon YG, Gye HR, Lee CJ. Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system. Appl Therm Eng. 2019;159:113797. https://doi.org/10.1016/j.applthermaleng.2019.113797.

    Article  Google Scholar 

  129. Mousavi S, Siavashi M, Zadehkabir A. A new design for hybrid cooling of Li-ion battery pack utilizing PCM and mini channel cold plates. Appl Therm Eng. 2021;197:117398. https://doi.org/10.1016/j.applthermaleng.2021.117398.

    Article  CAS  Google Scholar 

  130. Ranjbaran YS, Haghparast SJ, Shojaeefard MH. Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries. J Therm Anal Calorim. 2020;141:1717–39. https://doi.org/10.1007/s10973-019-08989-w.

    Article  CAS  Google Scholar 

  131. Jilte RD, Kumar R, Ahmadi MH, Chen L. Battery thermal management system employing phase change material with cell-to-cell air cooling. Appl Therm Eng. 2019;161:114199. https://doi.org/10.1016/j.applthermaleng.2019.114199.

    Article  Google Scholar 

  132. Zhao R, Gu J, Liu J. Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design. Energy. 2017;135:811–22. https://doi.org/10.1016/j.energy.2017.06.168.

    Article  CAS  Google Scholar 

  133. Heyhat MM, Mousavi S, Siavashi M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. J Energy Storage. 2020;28:101235. https://doi.org/10.1016/j.est.2020.101235.

    Article  Google Scholar 

  134. Sun Z, Fan R, Yan F, Zhou T, Zheng N. Thermal management of the lithium-ion battery by the composite PCM-Fin structures. Int J Heat Mass Transf. 2019;145:118739. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118739.

    Article  Google Scholar 

  135. Choudhari VG, Dhoble AS, Panchal S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. Int J Heat Mass Trans. 2020;2020(163):120434. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120434.

    Article  Google Scholar 

  136. Lazrak A, Fourmigué JF, Robin JF. An innovative practical battery thermal management system based on phase change materials: numerical and experimental investigations. Appl Therm Eng. 2018;128:20–32. https://doi.org/10.1016/j.applthermaleng.2017.08.172.

    Article  Google Scholar 

  137. Verma A, Shashidhara S, Rakshit D. A comparative study on battery thermal management using phase change material (PCM). Therm Sci Eng Progress. 2019;11:74–83. https://doi.org/10.1016/j.tsep.2019.03.003.

    Article  Google Scholar 

  138. Zhu W, Lei F, Zhong H, Jiang X. Thermal performance revival of composite PCM for hybrid BTMSs by architecture and formula integrated optimization. Appl Therm Eng. 2022;210:1359–4311. https://doi.org/10.1016/j.applthermaleng.2022.118320.

    Article  CAS  Google Scholar 

  139. Xin Q, Xiao J, Yang T, Zhang H, Long X. Thermal management of lithium-ion batteries under high ambient temperature and rapid discharging using composite PCM and liquid cooling. Appl Therm Eng. 2022;210:1359–4311. https://doi.org/10.1016/j.applthermaleng.2022.118230.

    Article  CAS  Google Scholar 

  140. Lin X, Zhang X, Ji J, Liu L, Yang M, Zou L. Experimental investigation of form-stable phase change material with enhanced thermal conductivity and thermal-induced flexibility for thermal management. Appl Therm Eng. 2022;201:1359–4311. https://doi.org/10.1016/j.applthermaleng.2021.117762.

    Article  CAS  Google Scholar 

  141. Liu X, Wang C, Wu T, Li Z, Wu C. A novel stable and flexible composite phase change materials for battery thermal management. Appl Therm Eng. 2022;212:1359–4311. https://doi.org/10.1016/j.applthermaleng.2022.118510.

    Article  CAS  Google Scholar 

  142. Huang Q, Li X, Zhang G, Deng J, Wang C. Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials. Appl Therm Eng. 2021;183:1359–4311. https://doi.org/10.1016/j.applthermaleng.2020.116151.

    Article  CAS  Google Scholar 

  143. Cao J, Feng J, Fang X, Ling Z, Zhang Z. A delayed cooling system coupling composite phase change material and nano phase change material emulsion. Appl Therm Eng. 2021;191:116888. https://doi.org/10.1016/j.applthermaleng.2021.116888.

    Article  Google Scholar 

  144. El Idi MM, Karkri M, Tankari MA. A passive thermal management system of Li-ion batteries using PCM composites: experimental and numerical investigations. Int J Heat Mass Trans. 2021;169:120894. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120894.

    Article  CAS  Google Scholar 

  145. Zou D, Liu X, He R, Zhu S, Bao J, Guo J, Hu Z, Wang B. Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module. Energy Convers Manag. 2019;180:1196–202. https://doi.org/10.1016/j.enconman.2018.11.064.

    Article  CAS  Google Scholar 

  146. Wang H, Wang Y, Hu F, Shi W, Hu X, Li H, Chen S, Lin H, Jiang C. Heat generation measurement and thermal management with phase change material based on heat flux for high specific energy power battery. Appl Therm Eng. 2021;194:117053. https://doi.org/10.1016/j.applthermaleng.2021.117053.

    Article  CAS  Google Scholar 

  147. Jilte R, Afzal A, Panchal S. A novel battery thermal management system using nano-enhanced phase change materials. Energy. 2021;219:119564. https://doi.org/10.1016/j.energy.2020.119564.

    Article  CAS  Google Scholar 

  148. Lei S, Shi Y, Chen G. Heat-pipe based spray-cooling thermal management system for lithium-ion battery: experimental study and optimization. Int J Heat Mass Trans. 2020;163:120494. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120494.

    Article  CAS  Google Scholar 

  149. Kleiner J, Singh R, Schmid M, Komsiyska L, Elger G, Endisch C. Influence of heat pipe assisted terminal cooling on the thermal behavior of a large prismatic lithium-ion cell during fast charging in electric vehicles. Appl Therm Eng. 2021;188:116328. https://doi.org/10.1016/j.applthermaleng.2020.116328.

    Article  Google Scholar 

  150. Smith J, Singh R, Hinterberger M, Mochizuki M. Battery thermal management system for electric vehicle using heat pipes. Int J Therm Sci. 2018;134:517–29. https://doi.org/10.1016/j.ijthermalsci.2018.08.022.

    Article  Google Scholar 

  151. Liang Z, Wang R, Malt AH, Souri M, Esfahani MN, Jabbari M. Systematic evaluation of a flat-heat-pipe-based thermal management: cell-to-cell variations and battery ageing. Appl Therm Eng. 2021;192:116934. https://doi.org/10.1016/j.applthermaleng.2021.116934.

    Article  Google Scholar 

  152. Jouhara H, Serey N, Khordehgah N, Bennett R, Almahmoud S, Lester SP. Investigation, development and experimental analyses of a heat pipe based battery thermal management system. Int J Thermofluids. 2020;1–2:100004. https://doi.org/10.1016/j.ijft.2019.100004.

    Article  Google Scholar 

  153. Wang J, Gan Y, Liang J, Tan M, Li Y. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells. Appl Therm Eng. 2019;151:475–85. https://doi.org/10.1016/j.applthermaleng.2019.02.036.

    Article  Google Scholar 

  154. Behi H, Karimi D, Behi M, Jaguemont J, Ghanbarpour M, Behnia M, Berecibar M, Mierlo JV. Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles. J Energy Storage. 2020;32:101893. https://doi.org/10.1016/j.est.2020.101893.

    Article  Google Scholar 

  155. Qu J, Wang C, Li X, Wang H. Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management. Appl Therm Eng. 2018;135:1–9. https://doi.org/10.1016/j.applthermaleng.2018.02.045.

    Article  Google Scholar 

  156. Bernagozzi M, Georgoulas A, Miché N, Rouaud C, Marengo M. Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts. Appl Therm Eng. 2021;194:117061. https://doi.org/10.1016/j.applthermaleng.2021.117061.

    Article  CAS  Google Scholar 

  157. Gou J, Liu W, Luo S. The thermal performance of a novel internal cooling method for the electric vehicle battery: an experimental study. Appl Therm Eng. 2019;161:114102. https://doi.org/10.1016/j.applthermaleng.2019.114102.

    Article  CAS  Google Scholar 

  158. Peng P, Wang Y, Jiang F. Numerical study of PCM thermal behavior of a novel PCM-heat pipe combined system for Li-ion battery thermal management. Appl Therm Eng. 2022;209:1359–4311. https://doi.org/10.1016/j.applthermaleng.2022.118293.

    Article  CAS  Google Scholar 

  159. Weng J, Ouyang D, Yang X, Chen M, Zhang G, Wang J. Experimental study on thermal behavior of PCM-module coupled with various cooling strategies under different temperatures and protocols. Appl Therm Eng. 2021;197:117376. https://doi.org/10.1016/j.applthermaleng.2021.117376.

    Article  Google Scholar 

  160. Ling YZ, She XH, Zhang XS, Chen TT, Lin XR, Feng JK. A PCM-based thermal management system combining three-dimensional pulsating heat pipe with forced-air cooling. Appl Therm Eng. 2022;213:118732. https://doi.org/10.1016/j.applthermaleng.2022.118732.

    Article  Google Scholar 

  161. Kim JS, Shin DH, You SM, Lee J. Thermal performance of aluminum vapor chamber for EV battery thermal management. Appl Therm Eng. 2021;185:116337. https://doi.org/10.1016/j.applthermaleng.2020.116337.

    Article  CAS  Google Scholar 

  162. Yue QL, He CX, Sun J, Xu JB, Zhao TS. A passive thermal management system with thermally enhanced water adsorbents for lithium-ion batteries powering electric vehicles. Appl Therm Eng. 2022;207:1359–4311. https://doi.org/10.1016/j.applthermaleng.2022.118156.

    Article  CAS  Google Scholar 

  163. Jabbari M, Wang R, Liang Z, Esfahani MN, Hosseinzadeh E. Numerical modelling of nanocomposite conductive plate for battery thermal management using a novel multi-domain approach. Appl Therm Eng. 2021;182:116067. https://doi.org/10.1016/j.applthermaleng.2020.116067.

    Article  CAS  Google Scholar 

  164. Duh YS, Lin KH, Kao CS. Experimental investigation and visualization on thermal runaway of hard prismatic lithium-ion batteries used in smart phones. J Therm Anal Calorim. 2018;132:1677–92. https://doi.org/10.1007/s10973-018-7077-2.

    Article  CAS  Google Scholar 

  165. Duh YS, Lin YC, Ho TC, Kao CS. Experimental study on the runaway behaviors of Panasonic 21,700 LiNi0.8Co0.15Al0.05O2 battery used in electric vehicle under thermal failure. J Therm Anal Calorim. 2022;147:12005–18. https://doi.org/10.1007/s10973-022-11394-5.

    Article  CAS  Google Scholar 

  166. Wang YW. Evaluate the deflagration potential for commercial cylinder Li-ion cells under adiabatic confinement testing. J Therm Anal Calorim. 2021;143:661–70. https://doi.org/10.1007/s10973-020-09282-x.

    Article  CAS  Google Scholar 

  167. Duh YS, Tsai MT, Kao CS. Thermal runaway on 18650 lithium-ion batteries containing cathode materials with and without the coating of self-terminated oligomers with hyper-branched architecture (STOBA) used in electric vehicles. J Therm Anal Calorim. 2017;129:1935–48. https://doi.org/10.1007/s10973-017-6356-7.

    Article  CAS  Google Scholar 

  168. Duh YS, Tsai MT, Kao CS. Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle. J Therm Anal Calorim. 2017;127:983–93. https://doi.org/10.1007/s10973-016-5767-1.

    Article  CAS  Google Scholar 

  169. Zhang H, Xia Q, Guo Z, Du Z. Study on the criticality of thermal safety of cylindrical battery. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6281-9.

    Article  Google Scholar 

  170. Wang Q, Zhao X, Ye J, Sun Q, Ping P, Sun J. Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. J Therm Anal Calorim. 2016;2016(124):417–28. https://doi.org/10.1007/s10973-015-5100-4.

    Article  CAS  Google Scholar 

  171. Afzal A, Samee ADM, Abdul Razak RK, Ramis MK. Effect of spacing on thermal performance characteristics of Li-ion battery cells. J Therm Anal Calorim. 2019;135:1797–811. https://doi.org/10.1007/s10973-018-7664-2.

    Article  CAS  Google Scholar 

  172. Wang YW, Huang HL. Blasting pressure for LiNi1/3Mn1/3Co1/3O2 battery evaluated by thermally adiabatic testing. J Therm Anal Calorim. 2021;144:335–42. https://doi.org/10.1007/s10973-020-10195-y.

    Article  CAS  Google Scholar 

  173. Chen W, Jiang J, Wen J. Thermal runaway induced by dynamic overcharge of lithium-ion batteries under different environmental conditions. J Therm Anal Calorim. 2021;2021(146):855–63. https://doi.org/10.1007/s10973-020-10037-x.

    Article  CAS  Google Scholar 

  174. Ouyang D, He Y, Chen M, Liu J, Wang J. Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions. J Therm Anal Calorim. 2018;132:65–75. https://doi.org/10.1007/s10973-017-6888-x.

    Article  CAS  Google Scholar 

  175. Wang Z, Ouyang D, Chen M, Wang X, Zhang Z, Wang J. Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes. J Therm Anal Calorim. 2019;136:2239–47. https://doi.org/10.1007/s10973-018-7899-y.

    Article  CAS  Google Scholar 

  176. Chen M, Dongxu O, Cao S, et al. Effects of heat treatment and SOC on fire behaviors of lithium-ion batteries pack. J Therm Anal Calorim. 2019;136:2429–37. https://doi.org/10.1007/s10973-018-7864-9.

    Article  CAS  Google Scholar 

  177. Jhu CY, Wang YW, Wen CY, Chiang CC, Shu CM. Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries. J Therm Anal Calorim. 2011;106:159–63. https://doi.org/10.1007/s10973-011-1452-6.

    Article  CAS  Google Scholar 

  178. Zhong G, Mao B, Wang C, Jiang L, Xu K, Wang Q. Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter. J Therm Anal Calorim. 2019;135:2879–89. https://doi.org/10.1007/s10973-018-7599-7.

    Article  CAS  Google Scholar 

  179. Weng J, He Y, Ouyang D, Yang X, Chen M, Cui S, Zhang G, Kit Yuen RK, Wang J. Honeycomb-inspired design of a thermal management module and its mitigation effect on thermal runaway propagation. Appl Therm Eng. 2021;195:117147. https://doi.org/10.1016/j.applthermaleng.2021.117147.

    Article  Google Scholar 

  180. Liu T, Hu J, Zhu X, Wang X. A practical method of developing cooling control strategy for thermal runaway propagation prevention in lithium ion battery modules. J Energy Storage. 2022;50:104564. https://doi.org/10.1016/j.est.2022.104564.

    Article  Google Scholar 

  181. Hu J, Liu T, Wang X, Wang Z, Wu L. Investigation on thermal runaway of 18,650 lithium ion battery under thermal abuse coupled with charging. J Energy Storage. 2022;51:104482. https://doi.org/10.1016/j.est.2022.104482.

    Article  Google Scholar 

  182. Liu T, Hu J, Tang Q, Zhu X, Wang X. Mitigating overcharge induced thermal runaway of large format lithium ion battery with water mist. Appl Therm Eng. 2021;197:117402. https://doi.org/10.1016/j.applthermaleng.2021.117402.

    Article  Google Scholar 

  183. Liu T, Hu J, Tao C, Zhu X, Wang X. Effect of parallel connection on 18650-type lithium ion battery thermal runaway propagation and active cooling prevention with water mist. Appl Therm Eng. 2021;184:116291. https://doi.org/10.1016/j.applthermaleng.2020.116291.

    Article  Google Scholar 

  184. Tao C, Chen Z, Ye Q, Li G, Zhang Y, Liu Y. The study of thermal runaway characteristics of multiple lithium batteries under different immersion times. J Therm Anal Calorim. 2022;147:11457–66. https://doi.org/10.1007/s10973-022-11324-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge Er. K. Dhayanidhi, Principal Engineer—R&D, ESAB India Limited, Ambattur Industrial Estate, Chennai, Tamil Nadu 600058 for his valuable inputs, sincere efforts cum assistance during revision, and knowledge sharing in industrial, research and development perspectives. We greatly acknowledge Dr. Piramanandhan Marimuthu, Senior Engineering Manager, ESD, ESAB India Limited, Ambattur Industrial Estate, Chennai, and Tamil Nadu 600058 for his valuable inputs and knowledge sharing in industrial perspectives. We sincerely acknowledge SRM institute of Science and Technology for accessing digital resource facilities which allowed us to explore this review topic and made this compilation successful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendran Senthil Kumar.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest regarding the literature publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhotia, V.K., Senthil Kumar, R. Review on various types of battery thermal management systems. J Therm Anal Calorim 148, 12335–12368 (2023). https://doi.org/10.1007/s10973-023-12561-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12561-y

Keywords

Navigation