Skip to main content
Log in

Effect of spacing on thermal performance characteristics of Li-ion battery cells

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, effect of spacing between the battery cells (\(\bar{W}_{\text{f}}\)) on thermal performance of Li-ion battery cells is investigated in detail. Developing a finite volume method-based numerical code for the present analysis, conjugate boundary condition at the cell and coolant interface is considered. SIMPLE algorithm employed for solving the Navier–Stokes equation is validated with famous benchmark lid-driven cavity problem. The heat generation inside the modern battery cell is uniform in accordance with cell zone. Air being the coolant flows between the channel spacing of the battery cells. Forced laminar flow of coolant and steady-state analysis with operating parameters like heat generation term (\(\bar{S}_{\text{q}}\)), Reynolds number (Re), conduction–convection parameter (ζcc), and aspect ratio (Ar) is analyzed with main focus of \(\bar{W}_{\text{f}}\). The range of \(\bar{W}_{\text{f}}\) is from 0.02 to 0.14 varied in steps of 0.02 and Re from 250 to 2000 in step of 250. Coupled heat transfer behavior in terms of maximum temperature and average Nusselt number for these parameters is provided. From the numerical analysis, it is observed that for most of the range of operating parameters, at \(\bar{W}_{\text{f}} = 0.02\), causes a sudden increase in temperature distribution and rise in maximum temperature above critical limits. Average Nusselt number increased with decrease in \(\bar{W}_{\text{f}}\) up to 0.04 and below this, it dropped. Spacing of \(\bar{W}_{\text{f}} = 0.04\) and \(\bar{W}_{\text{f}} = 0.06\) proved to be an optimal spacing at which average Nusselt number is the highest and the maximum temperature is within the safe limit for parameters considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

Ar :

Aspect ratio of battery cell

C f,x :

Dimensionless friction coefficient

L :

Length of battery cell

k :

Thermal conductivity

l o :

Length of extra outlet fluid domain

l i :

Length of extra fluid domain

h :

Convective heat transfer coefficient

L o :

Dimensionless length of extra outlet fluid domain

L i :

Dimensionless length of extra inlet fluid domain

Nu :

Nusselt number

q′′′ :

Volumetric heat generation

\(\bar{q}\) :

Non-dimensional heat flux

\(\bar{S}_{\text{q}}\) :

Dimensionless volumetric heat generation

Pr :

Prandtl number

Re :

Reynolds number

T :

Temperature

T o :

Maximum allowable temperature of battery cell

\(\bar{T}\) :

Non-dimensional temperature

u :

Velocity along the axial direction

U :

Non-dimensional velocity along the axial direction

u :

Free stream velocity

v :

Velocity along the transverse direction

Q r :

Heat removed from the surface (non-dimensional)

V :

Non-dimensional velocity along the transverse direction

w :

Half width

\(\bar{W}\) :

Non-dimensional width

x :

Axial direction

X :

Non-dimensional axial direction

y :

Transverse direction

Y :

Non-dimensional transverse direction

α :

Thermal diffusivity of fluid

ν :

Kinematic viscosity of fluid

ρ :

Density of fluid

ζ cc :

Conduction–convection parameter

μ :

Dynamic viscosity

c:

Center

f:

Fluid domain

avg:

Average

s:

Solid domain (battery cell)

surf:

Surface

∞:

Free stream

m:

Mean

References

  1. Huang P, Verma A, Robles DJ, Wang Q, Mukherjee P, Sun J. Probing the cooling effectiveness of phase change materials on lithium-ion battery thermal response under overcharge condition. Appl Therm Eng. 2018;132:521–30. https://doi.org/10.1016/j.applthermaleng.2017.12.121.

    Article  CAS  Google Scholar 

  2. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018;10:246–67. https://doi.org/10.1016/j.ensm.2017.05.013.

    Article  Google Scholar 

  3. Omar N, Monem M, Firouz Y, Salminen J, Smekens J. Lithium iron phosphate based battery–assessment of the aging parameters and development of cycle life model. Appl Energy. 2014;113:1575–85.

    Article  CAS  Google Scholar 

  4. Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery. Int J Heat Mass Transf. 2016;101:1093–102.

    Article  CAS  Google Scholar 

  5. Situ W, Zhang G, Li X, Yang X, Wei C, Rao M, et al. A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates. Energy. 2017;141:613–23. https://doi.org/10.1016/j.energy.2017.09.083.

    Article  CAS  Google Scholar 

  6. Richter F, Kjelstrup S, Vie PJS, Burheim OS. Thermal conductivity and internal temperature profiles of Li-ion secondary batteries. J Power Sources. 2017;359:592–600. https://doi.org/10.1016/j.jpowsour.2017.05.045.

    Article  CAS  Google Scholar 

  7. Pesaran AA. Battery thermal models for hybrid vehicle simulations. J Power Sources. 2002;110:377–82.

    Article  CAS  Google Scholar 

  8. Chen S, Wan C, Wang YY. Thermal analysis of lithium-ion batteries. J Power Sources. 2005;140:111–24.

    Article  CAS  Google Scholar 

  9. Hatchard T, MacNeil D, Basu A. Thermal model of cylindrical and prismatic lithium-ion cells. J Electrochem Soc. 2001;148:A755–61.

    Article  CAS  Google Scholar 

  10. Kim G, Pesaran A, Spotnitz R. A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources. 2007;170:476–89.

    Article  CAS  Google Scholar 

  11. Guo G, Long B, Cheng B, Zhou S, Xu P, Cao B. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. J Power Sources. 2010;195:2393–8.

    Article  CAS  Google Scholar 

  12. Smith K, Wang CY. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. J Power Sources. 2006;160:662–73.

    Article  CAS  Google Scholar 

  13. Sun H, Wang X, Tossan B, Dixon R. Three-dimensional thermal modeling of a lithium-ion battery pack. J Power Sources. 2012;206:349–56.

    Article  CAS  Google Scholar 

  14. Doh C, Kim D, Kim H, Shin H, Jeong YD. Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test. J Power Sources. 2008;175:881–5.

    Article  CAS  Google Scholar 

  15. Chiu K, Lin C, Yeh S, Lin Y, Chen KC. An electrochemical modeling of lithium-ion battery nail penetration. J Power Sources. 2014;251:254–63.

    Article  CAS  Google Scholar 

  16. Liu Z, Wang Y, Zhang J, Liu Z. Shortcut computation for the thermal management of a large air-cooled battery pack. Appl Therm Eng. 2014;66:445–52.

    Article  Google Scholar 

  17. Pesaran A, Keyser M, Burch S. An approach for designing thermal management systems for electric and hybrid vehicle battery packs. In: Fourth Vehicle Thermal Management Systems Conference and Exhibition, London, UK;1999.

  18. Xu X, He R. Review on the heat dissipation performance of battery pack with different structures and operation conditions. Renew Sustain Energy Rev. 2014;29:301–15.

    Article  CAS  Google Scholar 

  19. Fan L, Khodadadi J, Pesaran AA. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J Power Sources. 2013;238:301–12.

    Article  CAS  Google Scholar 

  20. Wang T, Tseng K, Zhao J, Wei Z. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Appl Energy. 2014;134:229–38.

    Article  Google Scholar 

  21. Wu M, Liu K, Wang Y, Wan CC. Heat dissipation design for lithium-ion batteries. J Power Sources. 2002;109:160–6.

    Article  CAS  Google Scholar 

  22. Chalise D, Shah K, Prasher R, Jain A. Conjugate heat transfer analysis of air/liquid cooling of a Li-ion battery pack. J Electrochem Energy Convers Storage. 2017. https://doi.org/10.1115/1.4038258.

    Article  Google Scholar 

  23. Zolot M, Pesaran A, Mihalic M. Thermal evaluation of Toyota Prius battery pack. SAE Tech Pap 2002: No. 2002-01-1962.

  24. Zolot M, Kelly K, Keyser M, M Mihalic. Thermal evaluation of the Honda insight battery pack. In: Intersociety Energy Conversion Engineering Conference, SAE; 1999: 2001, p. 923–8.

  25. Choi Y, Kang DM. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles. J Power Sources. 2014;270:273–80.

    Article  CAS  Google Scholar 

  26. Wang T, Tseng K, Zhao J. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model. Appl Therm Eng. 2015;90:521–9.

    Article  Google Scholar 

  27. Yang N, Zhang X, Li G, Hua D. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: a comparative analysis between aligned and staggered cell. Appl Therm Eng. 2015;80:55–65.

    Article  CAS  Google Scholar 

  28. Xu X, He R. Research on the heat dissipation performance of battery pack based on forced air cooling. J Power Sources. 2013;240:33–41.

    Article  CAS  Google Scholar 

  29. Zhao J, Rao Z, Huo Y, Liu X, Li Y. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles. Appl Therm Eng. 2015;85:33–43.

    Article  Google Scholar 

  30. Mohammadian S, Rassoulinejad-Mousavi SM. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam. J Power Sources. 2015;296:305–13.

    Article  CAS  Google Scholar 

  31. Dincer I, Hamut H, Javani N. Thermal management of electric vehicle battery systems. New York: Wiley; 2017. https://doi.org/10.1002/9781118900239.

    Book  Google Scholar 

  32. Richter F, Vie PJS, Kjelstrup S, Burheim OS. Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles. Electrochim Acta. 2017;250:228–37. https://doi.org/10.1016/j.electacta.2017.07.173.

    Article  CAS  Google Scholar 

  33. Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions. Appl Therm Eng. 2016;96:190–9. https://doi.org/10.1016/j.applthermaleng.2015.11.019.

    Article  CAS  Google Scholar 

  34. Karimi G, Li X. Experimental investigation of an adsorptive thermal energy storage. Int J Energy Res. 2012;37:13–24. https://doi.org/10.1002/er.1956.

    Article  CAS  Google Scholar 

  35. Xu XM, He R. Research on the heat dissipation performance of battery pack based on forced air cooling. J Power Sources. 2013;240:33–41. https://doi.org/10.1016/j.jpowsour.2013.03.004.

    Article  CAS  Google Scholar 

  36. Maleki H, Al Hallaj S, Selman JR, Ralph B, Dinwiddie B, Wang H. Thermal properties of Lithium-Ion battery and components. J Electrochem Soc. 1999;146:947–54. https://doi.org/10.1149/1.1391704.

    Article  CAS  Google Scholar 

  37. Werner D, Loges A, Becker DJ, Wetzel T. Thermal conductivity of Li-ion batteries and their electrode configurations—a novel combination of modelling and experimental approach. J Power Sources. 2017;364:72–83. https://doi.org/10.1016/j.jpowsour.2017.07.105.

    Article  CAS  Google Scholar 

  38. Yu K, Yang X, Cheng Y, Li C. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack. J Power Sources. 2014;270:193–200. https://doi.org/10.1016/j.jpowsour.2014.07.086.

    Article  CAS  Google Scholar 

  39. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys. 1982;48:387–411. https://doi.org/10.1016/0021-9991(82)90058-4.

    Article  Google Scholar 

  40. Jahangeer S, Ramis MK, Jilani G. Conjugate heat transfer analysis of a heat generating vertical plate. Int J Heat Mass Transf. 2007;50:85–93. https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.042.

    Article  Google Scholar 

  41. Ramis MK, Jilani G, Jahangeer S. Conjugate conduction-forced convection heat transfer analysis of a rectangular nuclear fuel element with non-uniform volumetric energy generation. Int J Heat Mass Transf. 2008;51:517–25. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.019.

    Article  CAS  Google Scholar 

  42. Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources. 2013;239:30–6. https://doi.org/10.1016/j.jpowsour.2013.03.102.

    Article  CAS  Google Scholar 

  43. Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles. J Power Sources. 2001;99:70–7. https://doi.org/10.1016/S0378-7753(01)00478-5.

    Article  CAS  Google Scholar 

  44. Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J Power Sources. 2011;196:5685–96. https://doi.org/10.1016/j.jpowsour.2011.02.076.

    Article  CAS  Google Scholar 

  45. Tong W, Somasundaram K, Birgersson E, Mujumdar AS, Yap C. Thermo-electrochemical model for forced convection air cooling of a lithium-ion battery module. Appl Therm Eng. 2016;99:672–82. https://doi.org/10.1016/j.applthermaleng.2016.01.050.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Ramis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Mohammed Samee, A.D., Abdul Razak, R.K. et al. Effect of spacing on thermal performance characteristics of Li-ion battery cells. J Therm Anal Calorim 135, 1797–1811 (2019). https://doi.org/10.1007/s10973-018-7664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7664-2

Keywords

Navigation