Skip to main content
Log in

Forced-air cooling system for large-scale lithium-ion battery modules during charge and discharge processes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat generation and accumulation during working schemes of the lithium-ion battery (LIB) are the critical safety issues in hybrid electric vehicles or electric vehicles. Appropriate battery thermal management is necessary for ensuring the safety and continuous power supply of rechargeable LIB modules. In this study, thirty cylinder 18650-type cells were fabricated a 6S5P battery module with a 2-mm spacing between cells to evaluate exothermic trajectories. The modules, equipped with a forced-air cooling system, were charged at 1 C-rate and discharged at 1, 1.5, and 2 C-rates for three cycles in each test; thermocouples were connected to the cells to track the variances in temperature and voltage. The efficiency of the developed forced-air cooling system was estimated to be 73.0% in case 1 with the 1 C discharge rate, and the temperature difference (TD) was less than 5.0 °C. The maximum temperature (Tmax) of this case was maintained below 45.0 °C showing uniform heat distribution. Moreover, extreme heat accumulation developed inside the module and damaged the adjacent LIBs during fast 2 C discharge test. Our TD testing showed that a forced-air cooling system in the LIB module provides effective heat dispersion under normal discharge conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Ampere (C s−1)

a :

Constant

b :

Constant

C:

Charge or discharge rate (A s)

C p :

Specific heat (J g−1 °C−1)

E 0 :

Li chemical potential (V)

F :

Faraday constant (96,487 C mol−1)

G :

Gibbs free energy (J)

I :

Current (A)

m :

Mass (g)

m LIB :

Mass of the LIB (g)

n :

nth Order

p :

Power (J)

P :

Pressure (atm)

Q conv :

Heat convection (J)

Q elect :

LIB operating heat in normal ambience (J)

Q elect, ad :

LIB operating heat in adiabatic environment (J)

Q G :

Joule heating (J)

Q L :

Heat loss (J)

S :

Entropy (J °C−1)

SOC:

State of charge (%)

T :

Temperature (°C)

T amb :

Ambient temperature (°C)

T max :

Maximum temperature (°C)

T LIB :

Temperature on the battery surface (°C)

t :

Time (s)

TD:

Temperature difference (°C)

TDmax :

Maximum temperature difference (°C)

T 0 :

Apparent exothermic onset temperature (°C)

V :

Voltage (V)

v :

Volume (m3)

W :

Watt (J s−1)

w :

Inflow wind velocity (8 m s−1)

x :

Charged number carried by the exchanged Li-ion

y :

Constant

z :

Constant

ΔH :

Heat generation (J)

ΔH ad :

Heat generation in adiabatic environment (J)

ΔH total :

Total heat generation (J)

ΔT :

Temperature variation (°C)

α :

Space compactness

β :

Cooling efficiency factor

η :

Cooling efficiency (%)

References

  1. Xun J, Liu R, Jiao K. Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs. J Power Sources. 2013;233:47–61.

    Article  CAS  Google Scholar 

  2. Liu Z, Wang Y, Zhang J, Liu Z. Shortcut computation for the thermal management of a large air-cooled battery pack. Appl Therm Eng. 2014;66:445–52.

    Article  Google Scholar 

  3. Zhang T, Gao Q, Wang G, Gu Y, Wang Y, Bao W, Zhang D. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process. Appl Therm Eng. 2017;116:655–62.

    Article  Google Scholar 

  4. Leng F, Tan CM, Pecht M. Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci Rep. 2015;5:12967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gabrisch H, Ozawa Y, Yazami R. Crystal structure studies of thermally aged LiCoO2 and LiMn2O4 cathodes. Electrochim Acta. 2006;52:1499-06.

    Article  CAS  Google Scholar 

  6. Ramadass P, Haran B, White R, Popov BN. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. J Power Sources. 2002;112:606–13.

    Article  CAS  Google Scholar 

  7. NCR18650PF datasheet. Lithium ion NCR18650PF. Panasonic Co., Ltd. (2016, June).

  8. Rao Z, Wang S, Zhang G. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery. J Energy Convers Manage. 2011;52:3408–14.

    Article  CAS  Google Scholar 

  9. Pesaran AA. Battery thermal models for hybrid vehicle simulations. J Power Sources. 2002;110:377–82.

    Article  CAS  Google Scholar 

  10. Hossain S, Kim YK, Saleh Y, Loutfy R. Overcharge studies of carbon fiber composite-based lithium-ion cells. J Power Sources. 2006;161:640–7.

    Article  CAS  Google Scholar 

  11. Roth EP, Doughty DH, Pile DL. Effects of separator breakdown on abuse response of 18650 Li-ion cells. J Power Sources. 2007;174:579–83.

    Article  CAS  Google Scholar 

  12. Wang Q, Zhao X, Ye J, Sun Q, Ping P, Sun J. Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. J Therm Anal Calorim. 2016;124:417–28.

    Article  CAS  Google Scholar 

  13. Choi YS, Kang DM. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles. J Power Sources. 2014;270:273–80.

    Article  CAS  Google Scholar 

  14. Park C, Jaura A. Dynamic thermal model of Li-ion battery for predictive behavior in hybrid and fuel cell vehicles. SAE Technical Paper, 2003-01-2286; 2003.

  15. Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources. 2013;239:30–6.

    Article  CAS  Google Scholar 

  16. Zhang Z, Jia L, Zhao N, Yang L. Thermal modeling and cooling analysis of high-power lithium ion cells. J Thermal Sci. 2011;20:570–5.

    Article  CAS  Google Scholar 

  17. Ye Y, Shi Y, Cai N, Lee J, He X. Electro-thermal modeling and experimental validation for lithium ion battery. J Power Sources. 2012;199:227–38.

    Article  CAS  Google Scholar 

  18. Kizilel R, Lateef A, Sabbah R, Farid MM, Selman JR, Al-Hallaj S. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. J Power Sources. 2008;183:370–5.

    Article  CAS  Google Scholar 

  19. Vitaa AD, Maheshwaria A, Destroc M, Santarellia M, Carello M. Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications. Appl Energy. 2017;206:101–12.

    Article  Google Scholar 

  20. Basu S, Hariharan KS, Kolake SM, Song T, Sohn DK, Yeo T. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system. Appl Energy. 2016;181:1–13.

    Article  CAS  Google Scholar 

  21. Saw LH, Ye Y, Yew MC, Chong WT, Yew MK, Ng TC. Computational fluid dynamics simulation on open cell aluminum foams for Li-ion battery cooling system. Appl Energy. 2017;204:1489–99.

    Article  CAS  Google Scholar 

  22. Linden D, Reddy TB. Electrochemical principles and reactions. In: Reddy TB, Linden D, editors. Handbook of batteries, vol. 3. New York: McGraw-Hill; 2002. p. 2.1–2.37.

    Google Scholar 

  23. Tian Y, Li D, Tian J, Xia B. State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer. Electrochim Acta. 2017;225:225–34.

    Article  CAS  Google Scholar 

  24. Chung YH, Jhang WC, Chen WC, Wang YW, Shu CM. Thermal hazard assessment for three C rates for a Li-polymer battery by using vent sizing package 2. J Therm Anal Calorim. 2017;127:809–17.

    Article  CAS  Google Scholar 

  25. Kizilel R, Sabbah R, Selman JR, AL-Hallaj S. An alternative cooling system to enhance the safety of Li-ion battery packs. J Power Sources. 2009;94:1105–12.

    Article  CAS  Google Scholar 

  26. Park M, Zhang X, Chung M, Less GB, Sastry AM. A review of conduction phenomena in Li-ion batteries. J Power Sources. 2010;195:7904–29.

    Article  CAS  Google Scholar 

  27. Shahid S, Agelin-Chaab M. Analysis of cooling effectiveness and temperature uniformity in a battery pack for cylindrical batteries. Energies. 2017;10:1157.

    Article  Google Scholar 

  28. Yazami R. Thermodynamics of electrode materials for lithium-ion batteries. In: Ozawa K, editor. Lithium ion rechargeable batteries: materials, technology, and new applications. New York: Wiley; 2012. p. 67–102.

    Google Scholar 

  29. Li J, Chen J, Lu H, Jia M, Jiang L, Lai Y, Zhang Z. A positive-temperature-coefficient layer based on Ni-mixed poly(vinylidene fluoride) composites for LiFePO4 electrode. Int J Electrochem Sci. 2013;8:5223–31.

    CAS  Google Scholar 

  30. Saw LH, Ye Y, Tay AAO, Chong WT, Kuan SH, Yew MC. Computational fluid dynamic and thermal analysis of lithium-ion battery pack with air cooling. Appl Energy. 2016;177:783–92.

    Article  Google Scholar 

  31. Karimi G, Li X. Thermal management of lithium-ion batteries for electric vehicles. Int J Energy Res. 2013;37:13–24.

    Article  CAS  Google Scholar 

  32. Liu G, Ouyang M, Lu L, Li J, Han X. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. J Therm Anal Calorim. 2014;116:1001–10.

    Article  CAS  Google Scholar 

  33. Sabbah R, Kizilel R, Selman JR, Al-Hallaj S. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution. J Power Sources. 2008;182:630–8.

    Article  CAS  Google Scholar 

  34. Chen CF, Verma A, Mukherjeez PP. Probing the role of electrode microstructure in the lithium-ion battery thermal behavior. J Electrochem Soc. 2017;11:E3146–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Ministry of Science and Technology (MOST 107-2221-E-224-004-MY3), Taiwan, ROC, for providing financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Min Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YW., Jiang, JM., Chung, YH. et al. Forced-air cooling system for large-scale lithium-ion battery modules during charge and discharge processes. J Therm Anal Calorim 135, 2891–2901 (2019). https://doi.org/10.1007/s10973-018-7646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7646-4

Keywords

Navigation