Skip to main content
Log in

Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal responses of the lithium-ion cells during charging and discharging are investigated using an accelerating rate calorimeter combined with a multi-channel battery cycler. The battery capacities are 800 and 1100 mAh, and the battery cathode is LiCoO2. It is found that the higher the current rates and the increased initial temperatures are, the greater the potential thermal hazard is. The temperature required to shut down the separator is 133 °C for this separator used in the battery. When the temperature exceeds this activation threshold temperature, the separator will melt and cause an internal short circuit between the electrodes. The heat generation during the discharging process is measured under adiabatic conditions. The heat generation at thermal runaway process contributes to the main heat in the whole experimental process. The total heat generation rate to cell capacity varies from 6.58 to 8.96 J mAh−1 in the six cases. The results can be used to investigate and provide guides for designing concepts for the safe use of lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Horiba T, Maeshima T, Matsumura T, Koseki M, Arai J, Muranaka Y. Applications of high power density lithium ion batteries. J Power Sources. 2005;146(1):107–10.

    Article  CAS  Google Scholar 

  2. Amine K, Chen Z, Zhang Z, Liu J, Lu W, Qin Y, et al. Mechanism of capacity fade of MCMB/Li1. 1 [Ni1/3Mn1/3Co1/3] 0.9 O2 cell at elevated temperature and additives to improve its cycle life. J Mater Chem. 2011;21(44):17754–9.

    Article  CAS  Google Scholar 

  3. Belharouak I, Vissers D, Amine K. Thermal Stability of the Li (Ni0. 8Co0. 15Al0. 05) O2 Cathode in the Presence of Cell Components. J Electrochem Soc. 2006;153(11):A2030–5.

    Article  CAS  Google Scholar 

  4. Chen Z, Qin Y, Liu J, Amine K. Lithium difluoro (oxalato) borate as additive to improve the thermal stability of lithiated graphite. Electrochem Solid-State Lett. 2009;12(4):A69–72.

    Article  CAS  Google Scholar 

  5. Chen Z, Qin Y, Ren Y, Lu W, Orendorff C, Roth EP, et al. Multi-scale study of thermal stability of lithiated graphite. Energ Environ Sci. 2011;4(10):4023–30.

    Article  CAS  Google Scholar 

  6. Katayama N, Kawamura T, Baba Y, Yamaki J-I. Thermal stability of propylene carbonate and ethylene carbonate–propylene carbonate-based electrolytes for use in Li cells. J Power Sources. 2002;109(2):321–6.

    Article  CAS  Google Scholar 

  7. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210–24.

    Article  CAS  Google Scholar 

  8. Botte GG, White RE, Zhang Z. Thermal stability of LiPF6–EC: EMC electrolyte for lithium ion batteries. J Power Sources. 2001;97:570–5.

    Article  Google Scholar 

  9. Ravdel B, Abraham K, Gitzendanner R, DiCarlo J, Lucht B, Campion C. Thermal stability of lithium-ion battery electrolytes. J Power Sources. 2003;119:805–10.

    Article  Google Scholar 

  10. Kweon HJ, Park J, Seo J, Kim G, Jung B, Lim HS. Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoCO2 in a Li-ion cell. J Power Sources. 2004;126(1–2):156–62.

    Article  CAS  Google Scholar 

  11. Hyung YE, Vissers DR, Amine K. Flame-retardant additives for lithium-ion batteries. J Power Sources. 2003;119:383–7.

    Article  Google Scholar 

  12. Lee CW, Venkatachalapathy R, Prakash J. A novel flame-retardant additive for lithium batteries. Electrochem Solid-State Lett. 2000;3(2):63–5.

    Article  CAS  Google Scholar 

  13. Xu K, Ding MS, Zhang S, Allen JL, Jow TR. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J Electrochem Soc. 2002;149(5):A622–6.

    Article  CAS  Google Scholar 

  14. Zhang S, Xu K, Jow T. Tris (2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries. J Power Sources. 2003;113(1):166–72.

    Article  CAS  Google Scholar 

  15. Zheng JY, Li X, Yu YJ, Feng XM, Zhao YF. Novel high phosphorus content phosphaphenanthrene-based efficient flame retardant additives for lithium-ion battery. J Therm Anal Calorim. 2014;117(1):319–24.

    Article  CAS  Google Scholar 

  16. Venugopal G, Moore J, Howard J, Pendalwar S. Characterization of microporous separators for lithium-ion batteries. J Power Sources. 1999;77(1):34–41.

    Article  CAS  Google Scholar 

  17. Wang Q, Ping P, Sun J, Chen C. Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive. J Power Sources. 2010;195(21):7457–61.

    Article  CAS  Google Scholar 

  18. Wang Q, Sun J, Chen C. Improved thermal stability of graphite electrodes in lithium-ion batteries using 4-isopropyl phenyl diphenyl phosphate as an additive. J Appl Electrochem. 2009;39(7):1105–10.

    Article  CAS  Google Scholar 

  19. Yao XL, Xie S, Chen CH, Wang QS, Sun JH, Li YL, et al. Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries. Electrochim Acta. 2005;50(20):4076–81.

    Article  CAS  Google Scholar 

  20. Wang QS, Sun JH, Chen CH. Enhancing the thermal stability of LiCoO2 electrode by 4-isopropyl phenyl diphenyl phosphate in lithium ion batteries. J Power Sources. 2006;162(2):1363–6.

    Article  CAS  Google Scholar 

  21. Ishikawa H, Mendoza O, Sone Y, Umeda M. Study of thermal deterioration of lithium-ion secondary cell using an accelerated rate calorimeter (ARC) and AC impedance method. J Power Sources. 2012;198:236–42.

    Article  CAS  Google Scholar 

  22. Jhu C-Y, Wang Y-W, Shu C-M, Chang J-C, Wu H-C. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J Hazard Mater. 2011;192(1):99–107.

    CAS  Google Scholar 

  23. Jhu C-Y, Wang Y-W, Wen C-Y, Shu C-M. Thermal runaway potential of LiCoO2 and Li (Ni1/3Co1/3Mn1/3) O2 batteries determined with adiabatic calorimetry methodology. Appl Energy. 2011;100(C):127–31.

    Google Scholar 

  24. Richard M, Dahn J. Accelerating rate calorimetry studies of the effect of binder type on the thermal stability of a lithiated mesocarbon microbead material in electrolyte. J Power Sources. 1999;83(1):71–4.

    Article  CAS  Google Scholar 

  25. Richard M, Dahn J. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental. J Electrochem Soc. 1999;146(6):2068–77.

    Article  CAS  Google Scholar 

  26. Richard M, Dahn J. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte. J Power Sources. 1999;79(2):135–42.

    Article  CAS  Google Scholar 

  27. Zhang JB, Huang J, Li Z, Wu B, Nie ZH, Sun Y, et al. Comparison and validation of methods for estimating heat generation rate of large-format lithium-ion batteries. J Therm Anal Calorim. 2014;117(1):447–61. doi:10.1007/s10973-014-3672-z.

    Article  CAS  Google Scholar 

  28. Jiang J, Dahn J. Comparison of the thermal stability of lithiated graphite in LiBOB EC/DEC and in LiPF6 EC/DEC. Electrochem Solid-State Lett. 2003;6(9):A180–2.

    Article  CAS  Google Scholar 

  29. Jiang J, Dahn J. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li [Ni0. 1Co0. 8Mn0. 1] O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem Commun. 2004;6(1):39–43.

    Article  CAS  Google Scholar 

  30. Jiang J, Dahn J. ARC studies of the reaction between Li 0FePO4 and LiPF6/or LiBOB EC/DEC electrolytes. Electrochem Commun. 2004;6(7):724–8.

    Article  CAS  Google Scholar 

  31. von Sacken U, Nodwell E, Sundher A, Dahn J. Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J Power Sources. 1995;54(2):240–5.

    Article  Google Scholar 

  32. Feng XN, Fang M, He XM, Ouyang MG, Lu LG, Wang H, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources. 2014;255:294–301. doi:10.1016/j.jpowsour.2014.01.005.

    Article  CAS  Google Scholar 

  33. Liu GM, Ouyang MG, Lu LG, Li JQ, Han XB. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. J Therm Anal Calorim. 2014;116(2):1001–10.

    Article  CAS  Google Scholar 

  34. Chen WC, Li JD, Shu CM, Wang YW. Effects of thermal hazard on 18650 lithium-ion battery under different states of charge. J Therm Anal Calorim. 2015;121(1):525–31. doi:10.1007/s10973-015-4672-3.

    Article  CAS  Google Scholar 

  35. Al Hallaj S, Maleki H, Hong J-S, Selman JR. Thermal modeling and design considerations of lithium-ion batteries. J Power Sources. 1999;83(1):1–8.

    Article  Google Scholar 

  36. Onda K, Ohshima T, Nakayama M, Fukuda K, Araki T. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. J Power Sources. 2006;158(1):535–42.

    Article  CAS  Google Scholar 

  37. Jiang J, Dahn JR. Effects of particle size and electrolyte salt on the thermal stability of Li0.5CoO2. Electrochim Acta. 2004;49(16):2661–6.

    Article  CAS  Google Scholar 

  38. Lee SY, Kim SK, Ahn S. Performances and thermal stability of LiCoO2 cathodes encapsulated by a new gel polymer electrolyte. J Power Sources. 2007;174(2):480–3. doi:10.1016/j.jpowsour.2007.06.155.

    Article  CAS  Google Scholar 

  39. Shigematsu Y, Ue M, Yamaki J-I. Thermal behavior of charged graphite and Li × CoO2 in electrolytes containing alkyl phosphate for lithium-ion cells. J Electrochem Soc. 2009;156(3):A176–80.

    Article  CAS  Google Scholar 

  40. Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113(1):81–100.

    Article  CAS  Google Scholar 

  41. Wang QS, Sun JH, Chen XF, Chu GQ, Chen CH. Effects of solvents and salt on the thermal stability of charged LiCoO2. Mater Res Bull. 2009;44(3):543–8.

    Article  CAS  Google Scholar 

  42. Yamaki J, Baba Y, Katayama N, Takatsuji H, Egashira M, Okada S. Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode. J Power Sources. 2003;119:789–93.

    Article  Google Scholar 

  43. Maleki H, Deng G, Anani A, Howard J. Thermal stability studies of li-ion cells and components. J Electrochem Soc. 1999;146(9):3224–9.

    Article  CAS  Google Scholar 

  44. Gu W, Wang C. Thermal–electrochemical modeling of battery systems. J Electrochem Soc. 2000;147(8):2910–22.

    Article  CAS  Google Scholar 

  45. Hatchard T, MacNeil D, Basu A, Dahn J. Thermal model of cylindrical and prismatic lithium-ion cells. J Electrochem Soc. 2001;148(7):A755–61.

    Article  CAS  Google Scholar 

  46. Kim G-H, Pesaran A, Spotnitz R. A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources. 2007;170(2):476–89.

    Article  CAS  Google Scholar 

  47. Chen S, Wan C, Wang Y. Thermal analysis of lithium-ion batteries. J Power Sources. 2005;140(1):111–24.

    Article  CAS  Google Scholar 

  48. Chen M, Sun QJ, Li YQ, Wu K, Liu BJ, Peng P, et al. A thermal runaway simulation on a lithium titanate battery and the battery module. Energies. 2015;8(1):490–500. doi:10.3390/en8010490.

    Article  CAS  Google Scholar 

  49. Torabi F, Esfahanian V. Study of thermal-runaway in batteries. I. Theoretical study and formulation. J Electrochem Soc. 2011;158(8):A850–8.

    Article  CAS  Google Scholar 

  50. Zhang SS. A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources. 2007;164(1):351–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51176183) and CAS-EU Partner Programme—Chinese H2020 Matching Fund from CAS (211134KYSB20150004). Dr. Q.S Wang is supported by Youth Innovation Promotion Association CAS (Grant no. 2013286).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingsong Wang or Jinhua Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhao, X., Ye, J. et al. Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. J Therm Anal Calorim 124, 417–428 (2016). https://doi.org/10.1007/s10973-015-5100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5100-4

Keywords

Navigation