Skip to main content
Log in

Lattice Boltzmann method’s ability to calculate entropy during MHD non-Newtonian ferrofluid-free convection under volumetric radiation and heat generation/absorption

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The capability of LBM in the determination of entropy during power-law ferrofluid-free convection in the presence of effective factors is depicted in this research. Uniform absorption/production of heat and magnetic field in different types/angles affects the current inside a 2D chamber. Evaluation of the influence of thermal radiation through modeling with three separate distribution functions on the characteristics of the flow within the chamber with variable aspect ratio under various internal and external factors is among the features of this research, which has not been inquired so far. Application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical evaluation. According to the results, the improvement in heat transfer due to the imposition of radiation on the system is more evident for fluid with higher viscosity. The enhancement of the power-law coefficient, further reducing the average Nusselt number value, diminishes the effectiveness of the magnetic field in reducing the entropy and the heat transfer rate. It is possible to achieve the current strength and the mean Nusselt value up to 40% and 61% more, respectively, by exerting a vertical magnetic field in a non-uniform type. Although for the generation of heat, there will be the lowest value of the thermal performance index and the average Nusselt number value, the greatest influence of the magnetic field is observed. The effectiveness of the addition of nanoparticles on the system thermal characteristics is more evident in cases where the conductivity effects are greater, such as the strong presence of the magnetic field in the high viscosities of the fluid. One of the effective ways to reduce the effect of the phenomenon of heat absorption/production is exposing the system to the shear thickening fluid. With this action, the changes in the average Nusselt number value for increasing the value of the heat absorption/generation parameter is about 59% lower than when a shear thinning fluid is considered. By designing the chamber in a smaller aspect ratio, in addition to enhancing the thermal performance system index, it is also feasible to decline the Bejan number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

∆:

Heat absorption/production index in dimensionless form

\(\beta_{{\text{R}}}\) :

Mean absorption coefficient (m−1)

λ :

Magnetic field angle (°)

\(\varepsilon\) :

Emissivity of radiative wall

θ :

Dimensionless temperature

φ :

The percentage of nanoparticles

ζ :

Chamber aspect ratio

\(\gamma\) :

Shear rate (s−1)

\(\tau\) :

Stress (pa)

\(\upsilon\) :

Kinematic viscosity (m2 s−1)

\(\mu\) :

Dynamic viscosity (Pa s)

ω :

Weighting factor

Ψ :

Stream function

B :

Strength of magnetic field (T)

Be:

The Bejan number

c :

Discrete velocity

f :

Distribution function related to the density field

F :

External force (Pa m2)

h :

Distribution function related to the energy field

H :

Dimensions (length and height) of the chamber (m)

Ha:

The Hartmann number

I :

Distribution function related to the radiation

MFT:

Magnetic field type

n :

Coefficient of power-law

Nu:

The Nusselt number

p :

Pressure (Pa)

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{Q}\) :

Volumetric heat absorption/production index (W m−3)

\(q_{{\text{R}}}\) :

Volumetric radiation (W m−3)

Ra:

The Rayleigh number

RP:

Radiation parameter

S :

Total entropy (W K−1)

T :

Temperature (K)

TPI:

Coefficient of thermal performance

u/v :

Horizontal/vertical velocity (m s−1)

x/y :

Horizontal/vertical coordinate (m)

b:

Repeating variable

BF:

Base fluid

cold:

The lowest system temperature

eq:

Equilibrium

ff:

Fluid friction

hot:

The highest system temperature

ht:

Heat transfer

i:

Lattice direction

mf:

Magnetic field

NF:

Nanofluid

NP:

Nanoparticle

R:

Radiative

References

  1. Shruti B, Alam MM, Parkash A, Dhinakaran S. Darcy number influence on natural convection around porous cylinders in an enclosure using Darcy–Brinkman–Forchheimer model: LBM study. Case Stud Therm Eng. 2023;45:102907. https://doi.org/10.1016/j.csite.2023.102907.

    Article  Google Scholar 

  2. Nemati M, Sefid M, Karimipour A, Chamkha AJ. Computational thermal performance analysis by LBM for cooling a hot oval object via magnetohydrodynamics non-Newtonian free convection by using magneto-ferrofluid. J Magn Magn Mater. 2023;577:170797. https://doi.org/10.1016/j.jmmm.2023.170797.

    Article  CAS  Google Scholar 

  3. Aly AM, Alhejaili W. Effects of thermal radiation on natural convection in two connected circular cylinders suspended by NEPCM and porous media. Numer Heat Transf A: Appl. 2022;82(8):469–81. https://doi.org/10.1080/10407782.2022.2079331.

    Article  CAS  Google Scholar 

  4. Albadr J, El-Amrani M, Seaid M. Simplified PN finite element approximations for coupled natural convection and radiation heat transfer. Numer Heat Transf A: Appl. 2023;83(5):478–502. https://doi.org/10.1080/10407782.2022.2091897.

    Article  CAS  Google Scholar 

  5. Younis O, Alizadeh M, Kadhim Hussein A, Ali B, Biswal U, Hasani ME. Mhd natural convection and radiation over a flame in a partially heated semicircular cavity filled with a nanofluid. Math. 2022;10(8):1347. https://doi.org/10.3390/math10081347.

    Article  Google Scholar 

  6. Jha BK, Samaila G. Numerical solution for natural convection flow near a vertical porous plate having convective boundary condition with nonlinear thermal radiation. Heat Transf. 2022;51(2):1711–24. https://doi.org/10.1002/htj.22371.

    Article  Google Scholar 

  7. Tu J, Qi C, Li K, Tang Z. Numerical analysis of flow and heat characteristic around micro-ribbed tube in heat exchanger system. Powder Technol. 2022;395:562–83. https://doi.org/10.1016/j.powtec.2021.10.009.

    Article  CAS  Google Scholar 

  8. Hamad NH. Unsteady MHD natural convection flow past an infinite vertical porous plate with radiation absorption effects. Heat Transf. 2023;52(2):1345–64. https://doi.org/10.1002/htj.22743.

    Article  Google Scholar 

  9. Soualmi R, Benbrik A, Lemonnier D, Cherifi M, Bouanani M. A hybrid scheme of single relaxation time lattice Boltzmann and finite volume methods coupled with discrete ordinates method for combined natural convection and volumetric radiation in an enclosure. J Comput Appl Mech. 2020;51(2):389–402. https://doi.org/10.22059/jcamech.2020.303972.516.

    Article  Google Scholar 

  10. Hossain A, Molla MM, Kamrujjaman M, Mohebujjaman M, Saha SC. MHD mixed convection of non-Newtonian Bingham nanofluid in a wavy enclosure with temperature-dependent thermophysical properties: a sensitivity analysis by response surface methodology. Energies. 2023;16(11):4408. https://doi.org/10.3390/en16114408.

    Article  CAS  Google Scholar 

  11. Gonchigara T. Peristaltic transport of Bingham fluid through nonuniform channel with convective conditions and Lorentz forces. J Adv Res Fluid Mech Therm Sci. 2023;103(1):75–86. https://doi.org/10.37934/arfmts.103.1.7586.

    Article  Google Scholar 

  12. Dutta S, Bhattacharyya S, Pop I. Heat transfer enhancement compared to entropy generation by imposing magnetic field and hybrid nanoparticles in mixed convection of a Bingham plastic fluid in a ventilated enclosure. Int J Numer Methods Heat Fluid Flow. 2022;32(9):3007–38. https://doi.org/10.1108/HFF-09-2021-0623.

    Article  Google Scholar 

  13. Naidu KK, Sreenadh S. Fully developed free convective flow of a Bingham fluid in a circular pipe with permeable wall. Int J Ambient Energy. 2022;43(1):6643–50. https://doi.org/10.1080/01430750.2022.2037459.

    Article  Google Scholar 

  14. Chen Z, Shu C. Simplified lattice Boltzmann method for non-Newtonian power-law fluid flows. Int J Numer Methods Fluids. 2020;92(1):38–54. https://doi.org/10.1002/fld.4771.

    Article  CAS  Google Scholar 

  15. Rana BK, Senapati JR. Natural convection from an isothermally heated hollow vertical cylinder submerged in quiescent power-law fluids. J Therm Sci Eng Appl. 2023;15(2):021003. https://doi.org/10.1115/1.4055824.

    Article  CAS  Google Scholar 

  16. Loenko DS, Shenoy A, Sheremet MA. Thermogravitational convection of power-law nanofluid in a cavity with a heat-generated section on the bottom wall. Math Methods Appl Sci. 2023;46(10):11479–94. https://doi.org/10.1002/mma.7852.

    Article  Google Scholar 

  17. Hussain S, Jamal M, Haddad Z, Arıcı M. Numerical modeling of magnetohydrodynamic thermosolutal free convection of power law fluids in a staggered porous enclosure. Sustain Energy Technol Assess. 2022;53:102395. https://doi.org/10.1016/j.seta.2022.102395.

    Article  Google Scholar 

  18. Bilal S, Rehman M, Noeiaghdam S, Ahmad H, Akgül A. Numerical analysis of natural convection driven flow of a non-Newtonian power-law fluid in a trapezoidal enclosure with a U-shaped constructal. Energies. 2021;14(17):5355. https://doi.org/10.3390/en14175355.

    Article  CAS  Google Scholar 

  19. Poonia M. Computational study on MHD power-law fluid in tilted enclosure having sinusoidal heated sidewall. Multidiscip Model Mater Struct. 2020;16(5):1041–59. https://doi.org/10.1108/MMMS-08-2019-0154.

    Article  Google Scholar 

  20. Ferhi M, Djebali R, Mebarek-Oudina F, Abu-Hamdeh NH, Abboudi S. Magnetohydrodynamic free convection through entropy generation scrutiny of eco-friendly nanoliquid in a divided L-shaped heat exchanger with lattice Boltzmann method simulation. J Nanofluids. 2022;11(1):99–112. https://doi.org/10.1166/jon.2022.1819.

    Article  Google Scholar 

  21. Ibrahim M, Berrouk AS, Saeed T, Algehyne EA, Ali V. Lattice Boltzmann-based numerical analysis of nanofluid natural convection in an inclined cavity subject to multiphysics fields. Sci Rep. 2022;12(1):5514. https://doi.org/10.1038/s41598-022-09320-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karki P, Perumal DA, Yadav AK. Comparative studies on air, water and nanofluids based Rayleigh–Benard natural convection using lattice Boltzmann method: CFD and exergy analysis. J Therm Anal Calorim. 2022;147(2):1487–503. https://doi.org/10.1007/s10973-020-10496-2.

    Article  CAS  Google Scholar 

  23. Gal S, Kolsi L, Hassen W, Ben Ali N, Ben Khedher N, Chamkha AJ. Three-dimensional study of magnetohydrodynamic natural convection, entropy generation, and electromagnetic variables in a nanofluid filled enclosure equipped with inclined fins. ACS Omega. 2022;7(14):12365–73. https://doi.org/10.1021/acsomega.2c00923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang Z, Qi C, Tian Z, Chen L. Thermal management of electronic components based on new wave bio-inspired structures and nanofluids. Int Commun Heat Mass Transf. 2022;1(131):105840.

    Article  Google Scholar 

  25. Mliki B, Abbassi MA. Entropy generation of MHD natural convection heat transfer in a heated incinerator using hybrid-nanoliquid. Propuls Power Res. 2021;10(2):143–54. https://doi.org/10.1016/j.jppr.2021.01.002.

    Article  Google Scholar 

  26. Wang L, Huang C, Yang X, Chai Z, Shi B. Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution. Int J Heat Mass Transf. 2019;128:688–99. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.007.

    Article  CAS  Google Scholar 

  27. Mansour MA, Gorla RS, Siddiqa S, Rashad AM, Salah T. Unsteady MHD natural convection flow of a nanofluid inside an inclined square cavity containing a heated circular obstacle. Int J Nonlinear Sci Numer Simul. 2023;24(1):37–55. https://doi.org/10.1515/ijnsns-2020-0138.

    Article  CAS  Google Scholar 

  28. Tu J, Fan F, Qi C, Ding Z, Liang L. Experimental study on the particle fouling properties of magnetic nanofluids in a corrugated tube with built-in twisted turbulator under variable magnetic field. Powder Technol. 2022;400:117216. https://doi.org/10.1016/j.powtec.2022.117216.

    Article  CAS  Google Scholar 

  29. Wang Y, Qi C, Zhao R, Wang C. Study on the mechanism of modified surface and magnetic nanofluids on cooling performance of wireless charging equipment under magnetic field. Appl Therm Eng. 2022;208:118258. https://doi.org/10.1016/j.applthermaleng.2022.118258.

    Article  CAS  Google Scholar 

  30. Mandal DK, Biswas N, Manna NK, Gorla RS, Chamkha AJ. Hybrid nanofluid magnetohydrodynamic mixed convection in a novel W-shaped porous system. Int J Numer Methods Heat Fluid Flow. 2023;33(2):510–44. https://doi.org/10.1108/HFF-03-2022-0163.

    Article  Google Scholar 

  31. Yuki JQ, Sen I, Sakib MM, Nag P, Molla MM. Multiple-relaxation-time lattice Boltzmann simulation of magnetic field effect on natural convection of non-Newtonian nanofluid in rectangular enclosure. Adv Appl Math Mech. 2021;13:1142–68. https://doi.org/10.4208/aamm.OA-2020-0118.

    Article  Google Scholar 

  32. Gupta Y, Rana P. MHD natural convection in inclined wavy annulus utilizing hybrid nanofluid with discrete wavy coolers. J Therm Anal Calorim. 2021;143(2):1303–18. https://doi.org/10.1007/s10973-020-09920-4.

    Article  CAS  Google Scholar 

  33. Nemati M, Sefid M. The possibility of availing active and passive methods to achieve a flow with desirable characteristics via using the lattice Boltzmann method. Eng Anal Bound Elem. 2023;146:786–807. https://doi.org/10.1016/j.enganabound.2022.11.023.

    Article  Google Scholar 

  34. Aljaloud AS. Hybrid nanofluid mixed convection in a cavity under the impact of the magnetic field by lattice Boltzmann method: Effects of barrier temperature on heat transfer and entropy. Eng Anal Bound Elem. 2023;147:276–91. https://doi.org/10.1016/j.enganabound.2022.12.007.

    Article  Google Scholar 

  35. Nemati M, Sefid M. Using active/passive methods to control of MHD conjugate heat transfer of power-law fluids: a numerical entropy analysis by LBM. Int J Energy Environ Eng. 2023;14(4):719–41. https://doi.org/10.1007/s40095-022-00545-x.

    Article  CAS  Google Scholar 

  36. Sun C, Zhang Y, Farahani SD, Hu C, Nemati M, Sajadi SM. Analysis of power-law natural conjugate heat transfer under the effect of magnetic field and heat absorption/production based on the first and second laws of thermodynamics for the entropy via lattice Boltzmann method. Eng Anal Bound Elem. 2022;144:165–84. https://doi.org/10.1016/j.enganabound.2022.08.009.

    Article  Google Scholar 

  37. Afsana S, Molla MM, Nag P, Saha LK, Siddiqa S. MHD natural convection and entropy generation of non-Newtonian ferrofluid in a wavy enclosure. Int J Mech Sci. 2021;198:106350. https://doi.org/10.1016/j.ijmecsci.2021.106350.

    Article  Google Scholar 

  38. Hajji F, Mazgar A, Sakly A, Nejma FB. Entropy generation due to combined natural convection and thermal radiation within a rectangular enclosure. Heat Transf Eng. 2018;39(19):1698–714. https://doi.org/10.1080/01457632.2017.1384285.

    Article  CAS  Google Scholar 

  39. Zhang R, Ghasemi A, Barzinjy AA, Zareei M, Hamad SM, Afrand M. Simulating natural convection and entropy generation of a nanofluid in an inclined enclosure under an angled magnetic field with a circular fin and radiation effect. J Therm Anal Calorim. 2020;139:3803–16. https://doi.org/10.1007/s10973-019-08729-0.

    Article  CAS  Google Scholar 

  40. Iftikhar B, Siddiqui MA, Javed T. Computational analysis of heat transfer via heatlines for MHD natural convection ferrofluid flow inside the U-shaped cavity. Eur Phys J Plus. 2023;138(2):164. https://doi.org/10.1140/epjp/s13360-023-03769-w.

    Article  CAS  Google Scholar 

  41. Geridonmez P, Oztop H. Natural convection in a sinusoidally heated cavity filled with ferrofluid in the presence of partial variable magnetic field. Int J Numer Methods Heat Fluid Flow. 2023;33(1):411–35. https://doi.org/10.1108/HFF-01-2022-0053.

    Article  Google Scholar 

  42. Islam MM, Molla MM, Siddiqa S, Sheremet MA. MRT-LB simulation and response surface analysis of natural convection of non-Newtonian ferrofluid in an enclosure with non-uniformly heated radiator through GPU computing. Eng Anal Bound Elem. 2023;157:92–118. https://doi.org/10.1016/j.enganabound.2023.09.003.

    Article  Google Scholar 

  43. Sahi A, Hamdi M, Sadaoui D, Meziani B, Ourrad O. Effect of MHD mixed convection on a heat-generating element cooling inside a ventilated square cavity filled with Fe3O4–water ferrofluid. Numer Heat Transf A: Appl. 2023;84(8):837–52. https://doi.org/10.1080/10407782.2022.2163943.

    Article  CAS  Google Scholar 

  44. Yuan Z, Dong Y, Jin Z. Numerical simulation of MHD Natural convection and entropy generation in semicircular cavity based on LBM. Energies. 2023;16(10):4055. https://doi.org/10.3390/en16104055.

    Article  CAS  Google Scholar 

  45. Akter M, Sarker SP, Alam MM. Magnetohydrodynamics (MHD) effects on heat generation and joule heating with non-uniform surface temperature and natural convection flow over a vertical flat plate. Int J Mat Math Sci. 2023;5(2):09–18. https://doi.org/10.34104/ijmms.023.09018.

    Article  Google Scholar 

  46. Ahmed SE, Abderrahmane A, Alizadeh AA, Opulencia MJ, Younis O, Homod RZ, Guedri K, Zekri H, Toghraie D. Magnetohydrodynamic convection-entropy generation of a non-Newtonian nanofluid in a 3D chamber filled with a porous medium. J Magn Magn Mater. 2023;586:171175. https://doi.org/10.1016/j.jmmm.2023.171175.

    Article  CAS  Google Scholar 

  47. Nemati M, Farahani SD, Sani HM. Assessment of effectiveness amount of heat absorption/production and magnetic field on entropy generation during conjugate heat transfer of hybrid nanofluid. J Inst Eng (India): C. 2023;104(2):231–52. https://doi.org/10.1007/s40032-023-00921-4.

    Article  Google Scholar 

  48. Nemati M, Sefid M, Karimipour A. Cooling of two hot half-cylinders through MHD non-Newtonian ferrofluid free convection under heat absorption; investigation of methods to improve thermal performance via LBM. J Heat Mass Transf Res. 2023;10(1):67–86. https://doi.org/10.22075/jhmtr.2023.30230.1430.

    Article  Google Scholar 

  49. Sharma BK, Gandhi R, Mishra NK, Al-Mdallal QM. Entropy generation minimization of higher-order endothermic/exothermic chemical reaction with activation energy on MHD mixed convective flow over a stretching surface. Sci Rep. 2022;12(1):17688. https://doi.org/10.1038/s41598-022-22521-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hussain S, Pour MS, Jamal M, Armaghani T. MHD mixed convection and entropy analysis of non-newtonian hybrid nanofluid in a novel wavy elbow-shaped cavity with a quarter circle hot block and a rotating cylinder. Exp Tech. 2023;47(1):17–36. https://doi.org/10.1007/s40799-022-00549-6.

    Article  Google Scholar 

  51. Nemati M, Chamkha AJ. Examination of effective strategies on changing the amount of heat transfer and entropy during non-Newtonian magneto-nanofluid mixed convection inside a semi-ellipsoidal cavity. J Magn Magn Mater. 2023;578:170652. https://doi.org/10.1016/j.jmmm.2023.170652.

    Article  CAS  Google Scholar 

  52. Mohebbi R, Delouei AA, Jamali A, Izadi M, Mohamad AA. Pore-scale simulation of non-Newtonian power-law fluid flow and forced convection in partially porous media: thermal lattice Boltzmann method. Phys A: Stat Mech Appl. 2019;525:642–56. https://doi.org/10.1016/j.physa.2019.03.039.

    Article  CAS  Google Scholar 

  53. Wang L, Chai Z, Shi B. Regularized lattice Boltzmann simulation of double-diffusive convection of power-law nanofluids in rectangular enclosures. Int J Heat Mass Transf. 2016;102:381–95. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.041.

    Article  CAS  Google Scholar 

  54. Rostami S, Ellahi R, Oztop HF, Goldanlou AS. A study on the effect of magnetic field and the sinusoidal boundary condition on free convective heat transfer of non-Newtonian power-law fluid in a square enclosure with two constant-temperature obstacles using lattice Boltzmann method. J Therm Anal Calorim. 2021;144:2557–73. https://doi.org/10.1007/s10973-020-10202-2.

    Article  CAS  Google Scholar 

  55. Li D, Zhang H, Ye P, Yu Z. Natural convection of power-law nanofluid in a square enclosure with a circular cylinder: an immersed boundary-lattice Boltzmann study. Int J Mod Phys C. 2018;29(11):1850105. https://doi.org/10.1142/S012918311850105X.

    Article  CAS  Google Scholar 

  56. Rebey A, Sajadi SM. Examine the lattice Boltzmann method for the mixed convection simulation of water/Al2O3 nanofluid in a 2D rectangular cavity under radiation with isothermal semicircular obstacles. Eng Anal Bound Elem. 2023;149:27–37. https://doi.org/10.1016/j.enganabound.2023.01.009.

    Article  Google Scholar 

  57. Mondal B, Mishra SC. Simulation of natural convection in the presence of volumetric radiation using the lattice Boltzmann method. Numer Heat Transf; A: Appl. 2008;55(1):18–41. https://doi.org/10.1080/10407780802603121.

    Article  Google Scholar 

  58. Moufekkir F, Moussaoui MA, Mezrhab A, Lemonnier D, Naji H. MRT-lattice Boltzmann computations of natural convection and volumetric radiation in a tilted square enclosure. Int J Therm Sci. 2012;54:125–41. https://doi.org/10.1016/j.ijthermalsci.2011.11.022.

    Article  Google Scholar 

  59. Alqahtani AM, Sajadi SM, Al Hazmi SE, Alsenani TR, Alqurashi RS, El Bouz MA. Entropy generation and mixed convection in an enclosure with five baffles exposed to a uniform magnetic field with volumetric radiation for the solar collectors via lattice Boltzmann method. Eng Anal Bound Elem. 2023;150:285–97. https://doi.org/10.1016/j.enganabound.2023.01.028.

    Article  Google Scholar 

  60. Malekshah EH, Aybar HŞ, Hamida MB, Homod RZ. Parametric study on a convective flow in a thermal storage using IBM/thermal lattice Boltzmann flux solver. Eng Anal Bound Elem. 2023;148:62–72. https://doi.org/10.1016/j.enganabound.2022.12.013.

    Article  Google Scholar 

  61. Kashyap D, Dass AK, Oztop HF, Abu-Hamdeh N. Multiple-relaxation-time lattice Boltzmann analysis of entropy generation in a hot-block-inserted square cavity for different Prandtl numbers. Int J Therm Sci. 2021;165:106948. https://doi.org/10.1016/j.ijthermalsci.2021.106948.

    Article  Google Scholar 

  62. Wang Z, Wei Y, Qian Y. A bounce back-immersed boundary-lattice Boltzmann model for curved boundary. Appl Math Model. 2020;81:428–40. https://doi.org/10.1016/j.apm.2020.01.012.

    Article  Google Scholar 

  63. Gallivan MA, Noble DR, Georgiadis JG, Buckius RO. An evaluation of the bounce-back boundary condition for lattice Boltzmann simulations. Int J Numer Methods Fluids. 1997;25(3):249–63. https://doi.org/10.1002/(SICI)1097-0363.

    Article  Google Scholar 

  64. Yin X, Zhang J. An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method. J Comput Phys. 2012;231(11):4295–303. https://doi.org/10.1016/j.jcp.2012.02.014.

    Article  Google Scholar 

  65. Chen L, Yu Y, Lu J, Hou G. A comparative study of lattice Boltzmann methods using bounce-back schemes and immersed boundary ones for flow acoustic problems. Int J Numer Methods Fluids. 2014;74(6):439–67. https://doi.org/10.1002/fld.3858.

    Article  Google Scholar 

  66. Filippova O, Hänel D. Grid refinement for lattice-BGK models. J Comput Phys. 1998;147(1):219–28. https://doi.org/10.1006/jcph.1998.6089.

    Article  Google Scholar 

  67. Mei R, Luo LS, Shyy W. An accurate curved boundary treatment in the lattice Boltzmann method. J Comput Phys. 1999;155(2):307–30. https://doi.org/10.1006/jcph.1999.6334.

    Article  CAS  Google Scholar 

  68. Tao S, Chen B, Xiao H, Huang S. Lattice Boltzmann simulation of thermal flows with complex geometry using a single-node curved boundary condition. Int J Therm Sci. 2019;146:106112. https://doi.org/10.1016/j.ijthermalsci.2019.106112.

    Article  Google Scholar 

  69. Mohebbi R, Izadi M, Sajjadi H, Delouei AA, Sheremet MA. Examining of nanofluid natural convection heat transfer in a Γ-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method. Phys A: Stat Mech Appl. 2019;526:120831. https://doi.org/10.1016/j.physa.2019.04.067.

    Article  Google Scholar 

  70. Huang J, Hu Z, Yong WA. Second-order curved boundary treatments of the lattice Boltzmann method for convection–diffusion equations. J Comput Phys. 2016;310:26–44. https://doi.org/10.1016/j.jcp.2016.01.008.

    Article  Google Scholar 

  71. Ilis GG, Mobedi M, Sunden B. Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int Commun Heat Mass Transf. 2008;35(6):696–703. https://doi.org/10.1016/j.icheatmasstransfer.2008.02.002.

    Article  CAS  Google Scholar 

  72. Khezzar L, Siginer D, Vinogradov I. Natural convection of power law fluids in inclined cavities. Int J Therm Sci. 2012;53:8–17. https://doi.org/10.1016/j.ijthermalsci.2011.10.020.

    Article  Google Scholar 

  73. Loenko DS, Shenoy A, Sheremet MA. Natural convection of non-Newtonian power-law fluid in a square cavity with a heat-generating element. Energies. 2019;12(11):2149. https://doi.org/10.3390/en12112149.

    Article  CAS  Google Scholar 

  74. Massoudi MD, Ben Hamida MB, Almeshaal MA. Free convection and thermal radiation of nanofluid inside nonagon inclined cavity containing a porous medium influenced by magnetic field with variable direction in the presence of uniform heat generation/absorption. Int J Numer Methods Heat Fluid Flow. 2021;31(3):933–58. https://doi.org/10.1108/HFF-04-2020-0223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Toghraie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, M., Sefid, M. & Toghraie, D. Lattice Boltzmann method’s ability to calculate entropy during MHD non-Newtonian ferrofluid-free convection under volumetric radiation and heat generation/absorption. J Therm Anal Calorim 149, 3759–3779 (2024). https://doi.org/10.1007/s10973-024-12916-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12916-z

Keywords

Navigation