Skip to main content
Log in

Isoconversional analysis of kinetic pyrolysis of virgin polystyrene and its two real-world packaging wastes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In present work, two polystyrene packaging wastes of expanded polystyrene (EPS) foam and Yakult polystyrene milk bottle (YPS) along with pure polystyrene (PS) have been subjected to high-temperature nitrogen pyrolysis experiments under four heating rates of 5, 10, 15 and 20 K min−1. A comparison among these samples in terms of pyrolysis features and specific decomposition temperatures has been made, and EPS tends to be the most readily to undergo pyrolysis while YPS appears to be the most thermally stable. Based on thermogravimetric data, kinetic analysis has been systematically performed using various isoconversional methods. The calculations show that the activation energies calculated over the whole pyrolysis range are slightly different among the six temperature-integral methods, but the temperature-differential Friedman method has given rather distinct activation energies. The activation energies over the whole pyrolysis process are mass conversion-dependent for three samples and the activation energy averaged is the highest for YPS, followed by pure EPS and then EPS. A method combining master-plots method and differential composite method has been attempted to search the most suitable reaction models and chemical reaction order-based F0.58, F0.61 and F1.14 are found to be the most suitable reaction models for describing pyrolysis of PS, EPS and YPS, respectively. With the Coats–Redfern method, the mass-conversion curves along with its differential curves have been simulated, yielding very satisfactory performances for three polystyrene samples. In addition, thermodynamic functions such as the changes of entropy, enthalpy and Gibbs free energy during waste pyrolysis processes are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Ismail IMI, Nizami AS. Effect of plastic waste types on pyrolysis liquid oil. Int Biodeterior Biodegrad. 2017;119:239–52.

    Article  CAS  Google Scholar 

  2. Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK. A review on pyrolysis of plastic wastes. Energy Convers Manag. 2016;115:308–26.

    Article  Google Scholar 

  3. Lopez G, Artetxe M, Amutio M, Bilbao J, Olazar M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew Sustain Energy Rev. 2017;73:346–68.

    Article  CAS  Google Scholar 

  4. Miandad R, Nizami AS, Rehan M, Barakat MA, Khan MI, Mustafa A, Ismail IMI, Murphy JD. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Manag. 2016;58:250–9.

    Article  CAS  PubMed  Google Scholar 

  5. Das P, Tiwari P. Thermal degradation kinetics of plastics and model selection. Thermochim Acta. 2017;654:191–202.

    Article  CAS  Google Scholar 

  6. Xu FF, Wang B, Yang D, Hao JH, Qiao YY, Tian YY. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: pyrolysis behaviors and kinetic analysis. Energy Convers Manag. 2018;171:1106–15.

    Article  CAS  Google Scholar 

  7. Till Z, Varga T, Soja J, Miskolczi N, Chovan T. Kinetic identification of plastic waste pyrolysis on zeolite-based catalysts. Energy Convers Manag. 2018;173:320–30.

    Article  CAS  Google Scholar 

  8. Onwudili JA, Insura N, Williams PT. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. J Anal Appl Pyrolysis. 2009;86:293–303.

    Article  CAS  Google Scholar 

  9. Grause G, Ishibashi J, Kameda T, Bhaskar T, Yoshioka T. Kinetic studies of the decomposition of flame retardant containing high-impact polystyrene. Polym Degrad Stab. 2010;95:1129–37.

    Article  CAS  Google Scholar 

  10. Snegirev AY, Talalov VA, Stepanov VV, Harris JN. Formal kinetics of polystyrene pyrolysis in non-oxidizing atmosphere. Thermochim Acta. 2012;548:17–26.

    Article  CAS  Google Scholar 

  11. Sarada K, Muraleedharan K. Thermal degradation and optical properties of SiC-infused polystyrene nanocomposites. J Therm Anal Calorim. 2016;126:1809–19.

    Article  CAS  Google Scholar 

  12. Barbarias I, Lopez G, Artetxe M, Arregi A, Santamaria L, Bilbao J, Olazar M. Pyrolysis and in-line catalytic steam reforming of polystyrene through a two-step reaction system. J Anal Appl Pyrolysis. 2016;122:502–10.

    Article  CAS  Google Scholar 

  13. Barbarias I, Lopez G, Artetxe M, Arregi A, Bilbao J, Olazar M. Valorisation of different waste plastics by pyrolysis and in-line catalytic steam reforming for hydrogen production. Energy Convers Manag. 2018;156:575–84.

    Article  CAS  Google Scholar 

  14. Aljabri NM, Lai ZP, Huang KW. Selective conversion of polystyrene into renewable chemical feedstock under mild conditions. Waste Manag. 2018;78:871–9.

    Article  CAS  PubMed  Google Scholar 

  15. Arráez FJ, Arnal ML, Müller AJ. Thermal degradation of high-impact polystyrene with pro-oxidant additives. Polym Bull. 2019;76:1489–515.

    Article  Google Scholar 

  16. Ippolito NM, Cafiero L, Tuffi R, Ciprioti SV. Characterization of the residue of a commingled post-consumer plastic waste treatment plant: a thermal, spectroscopic and pyrolysis kinetic study. J Therm Anal Calorim. 2019;138:3323–33.

    Article  CAS  Google Scholar 

  17. Mo Y, Zhao L, Chen CL, Tan GYA, Wang JY. Comparative pyrolysis upcycling of polystyrene waste: thermodynamics, kinetics, and product evolution profile. J Therm Anal Calorim. 2013;111:781–8.

    Article  CAS  Google Scholar 

  18. Prathiba R, Shruthi M, Miranda LR. Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple. Waste Manag. 2018;76:528–36.

    Article  CAS  PubMed  Google Scholar 

  19. Nisar J, Ali G, Shah A, Iqbal M, Khan RA, Anwar F, Ullah R, Akhter MS. Fuel production from waste polystyrene via pyrolysis: kinetics and products distribution. Waste Manag. 2019;88:236–47.

    Article  CAS  PubMed  Google Scholar 

  20. Ghulam A, Jan N, Munawar I, Afzal S, Mazhar A, Raza SM, Umar R, Ahmad BI, Ali KR, Faheem S. Thermo-catalytic decomposition of polystyrene waste: comparative analysis using different kinetic models. Waste Manage Res. 2020;38:202–12.

    Article  Google Scholar 

  21. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescud C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  22. Flynn JH, Wall LA. General treatment of thermogravimetry of polymers. J Res Natl Bur Stand Sect A. 1966;70A:487–523.

    Article  Google Scholar 

  23. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  24. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  25. Madhysudanan PM, Krishnan K, Ninan KN. New equations for kinetic analysis of non-isothermal reactions. Thermochim Acta. 1993;221:13–21.

    Article  Google Scholar 

  26. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  27. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  28. Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.

    Article  CAS  Google Scholar 

  29. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic. J Polym Sci Part C: Polym Symp. 1964;6:183–95.

    Article  Google Scholar 

  30. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  31. Criado JM. Kinetic analysis of DTG data from master curve. Thermochim Acta. 1978;24:186–9.

    Article  CAS  Google Scholar 

  32. Criado JM, Pérez-Maqueda LA, Gotor FJ, Málek J, Koga N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim. 2003;72:901–6.

    Article  CAS  Google Scholar 

  33. Janković B. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem Eng J. 2008;139:128–35.

    Article  Google Scholar 

  34. Xu Y, Chen B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol. 2013;146:485–93.

    Article  CAS  PubMed  Google Scholar 

  35. Hao YH, Huang Z, Ye QQ, Wang JW, Yang XY, Fan XY, Li Y, Peng YW. A comparison study on non-isothermal decomposition kinetics of chitosan with different analysis methods. J Therm Anal Calorim. 2017;128:1077–91.

    Article  CAS  Google Scholar 

  36. Alshabanat M, Al-Arrash A, Mekhamer W. Polystyrene/montmorillonite nanocomposites: study of the morphology and effects of sonication time on thermal stability. J Nanomater. 2013;9:1–12.

    Article  Google Scholar 

  37. Seo DK, Park SS, Hwang JH, Yu T. Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrolysis. 2010;89:66–73.

    Article  CAS  Google Scholar 

  38. Wang XJ, Huang Z, Wei MY, Lu T, Nong DD, Zhao JX, Gao XY, Teng LJ. Catalytic effect of nanosized ZnO and TiO2 on thermal degradation of poly (lactic acid) and isoconversional kinetic analysis. Thermochim Acta. 2019;672:14–24.

    Article  CAS  Google Scholar 

  39. Collazzo GC, Broetto CC, Perondi D, Junges J, Dettmer A, Filho AAD, Foletto EL, Godinho M. A detailed non-isothermal kinetic study of elephant grass pyrolysis from different models. Appl Therm Eng. 2017;110:1200–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tianjin University of Commerce Students' Innovation and Entrepreneurship Training Program (No. 201910069257) for partially funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Huang, Z., Wang, XJ. et al. Isoconversional analysis of kinetic pyrolysis of virgin polystyrene and its two real-world packaging wastes. J Therm Anal Calorim 147, 1421–1437 (2022). https://doi.org/10.1007/s10973-020-10411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10411-9

Keywords

Navigation