Skip to main content
Log in

Thermal degradation and optical properties of SiC-infused polystyrene nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal degradation kinetics of polystyrene (PS) and various polystyrene–silicon carbide (PS/SiC) nanocomposite has been examined in detail and studied the reaction kinetics using non-isothermal thermogravimetry in nitrogen atmosphere at different heating rates. The activation energy of the thermal degradation was calculated using model-free methods of Kissinger–Akahira–Sunose and Tang, and the values are found to be compatible with each other. The kinetic analysis of the series of the prepared composites shows an increase in the average activation energy values with increase in the concentration of SiC nanoparticles, and the power law is found to be the best to describe the reaction model. The effect of various concentrations of SiC nanoparticles on the optical properties of the composites has been studied. The band gap energy of the nanocomposites decreases with SiC content. The SiC nanoparticles enhance the UV absorption of the composite film and modify overall optical behavior of the composite films. Further, the electronic structure and bonding properties of SiC-infused polystyrene molecule have been studied based on the DFT method by using the Gaussian09W simulation package to predict the stability and reactivity. The geometries have been analyzed using B3LYP/6-31G basis set .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ganguli S, Roy AK, Anderson DP. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon. 2008;46:806–17.

    Article  CAS  Google Scholar 

  2. He H, Fu R, Shen Y, Han Y, Song X. Preparation and properties of Si3N4/PS composites used for electronic packaging. Compos Sci Technol. 2007;67:2493–9.

    Article  CAS  Google Scholar 

  3. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC. Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C. 2007;111:7565–9.

    Article  CAS  Google Scholar 

  4. Cao JP, Zhao X, Zhao J, Zha JW, Hu GH, Dang ZM. Improved thermal conductivity a flame retardancy in polystyrene/poly(vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles. ACS Appl Mater Interfaces. 2013;5:6915–24.

    Article  CAS  Google Scholar 

  5. Lin W, Moon KS, Wong CP. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube–polymer nanocomposites: toward applications as thermal interface materials. Adv Mater. 2009;21:2421–4.

    Article  CAS  Google Scholar 

  6. Sain M, Park SH, Suhara F, Law S. Flame retardant and mechanical properties of natural fiber—PP composites containing magnesium hydroxide. Polym Degrad Stabil. 2004;83:363–7.

    Article  CAS  Google Scholar 

  7. Li Y, Huang XY, Hu ZW, Jiang PK, Li ST, Tanaka T. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl Mater Interfaces. 2011;3:4396–403.

    Article  CAS  Google Scholar 

  8. Li TL, Hsu SLC. Synthesis, characterization and enhanced properties of novel graphite-like carbon nitride/polyimide composite films. J Phys Chem B. 2010;114:6825–9.

    Article  CAS  Google Scholar 

  9. Veca LM, Meziani MJ, Wang W, Wang X, Lu FS, Zhang PY, Lin Y, Fee R, Connell JW, Sun YP. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater. 2009;21:2088–92.

    Article  CAS  Google Scholar 

  10. Yu SZ, Hing P, Hu X. Thermal conductivity of polystyrene- aluminium nitride composite. Compos Part A Appl Sci Manuf. 2002;33:289–92.

    Article  Google Scholar 

  11. Im H, Kim J. The effect of Al2O3 doped multi-walled carbon nanotubes on the thermal conductivity of Al2O3/epoxy terminated poly(dimethylsiloxane) composites. J Carbon. 2011;49:3503–11.

    Article  CAS  Google Scholar 

  12. Kim SR, Poostforush M, Kim JH, Lee SG. Thermal diffusivity of in situ exfoliated graphite intercalated compound/polyamide and graphite/polyamide composites. Express Polym Lett. 2012;6:476–84.

    Article  CAS  Google Scholar 

  13. Shi Z, Radwan M, Kirihara S, Miyamoto Y, Jin Z. Combustion synthesis of rod-like AlN nanoparticles. J Ceramic Soc Jpn. 2008;116:975–9.

    Article  CAS  Google Scholar 

  14. Zhou T, Wang X, Liu XH, Lai JZ. Effect of silane treatment of carboxylic-functionalized multi-walled carbon nanotubes on the thermal properties of epoxy nanocomposites. Express Polym Lett. 2010;4:217–26.

    Article  CAS  Google Scholar 

  15. Li TL, Hsu SLC. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J Phys Chem B. 2010;114:6825–9.

    Article  CAS  Google Scholar 

  16. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progr Polym Sci. 2011;36:914–44.

    Article  CAS  Google Scholar 

  17. Zavyalov SA, Pivkina AN, Schoonman J. Formation and characterization of metal- polymer nanostructured composites. Solid State Ion. 2002;147:415–9.

    Article  CAS  Google Scholar 

  18. Martins JA, Cruz VS. Flow activation volume of polystyrene/multiwall carbon nanotubes composites. Polymer. 2011;52:5149–55.

    Article  CAS  Google Scholar 

  19. Cailiang Z, Bin Z, Lee L. Extrusion foaming of polystyrene/carbon particles using carbon dioxide and water as co-blowing agents. J Polymer. 2011;52:1847–55.

    Article  Google Scholar 

  20. He H, Fu R, Shen Y, Han Y, Song X. Preparation and properties of Si3N4/PS composites used for electronic packaging. Compos Sci Technol. 2007;67:2493–9.

    Article  CAS  Google Scholar 

  21. Zhou W, Yu D, Min C, Fu Y, Guo X. Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites. J Appl Polym Sci. 2009;112:1695–6.

    Article  CAS  Google Scholar 

  22. Gutmann B, Obermayer D, Reichart B, Prekodravac B, Irfan M, Kremsner JM, Kappe CO. Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single- mode reactors. Chem Eur J. 2010;16:12182–94.

    Article  CAS  Google Scholar 

  23. Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Comp Mater. 2006;40:1511–75.

    Article  CAS  Google Scholar 

  24. Fakhrpour G, Bagheri S, Golriz M, Shekari M, Omrani A, Shameli A. Degradation kinetics of PET/PEN blend nanocomposites using differential isoconversional and differential master plot approaches. J Therm Anal Calorim. 2016;124:917–24.

    Article  CAS  Google Scholar 

  25. Rajeshwari P, Dey TK. Advanced isoconversional and master plot analyses on non-isothermal degradation kinetics of AlN (nano)-reinforced HDPE composites. J Therm Anal Calorim. 2016;125:369–86.

    Article  CAS  Google Scholar 

  26. Sovizi MR, Fakhrpour G, Bagheri S, Bardajee GR. Non-isothermal dehydration kinetic study of a new swollen biopolymer silver nanocomposite hydrogel. J Therm Anal Calorim. 2015;121:1383–91.

    Article  CAS  Google Scholar 

  27. Pielichowska K. The influence of polyoxymethylene molar mass on the oxidative thermal degradation of its nanocomposites with hydroxyapatite. J Therm Anal Calorim. 2016;124:751–65.

    Article  CAS  Google Scholar 

  28. Pilawka R, Paszkiewicz S, Rosłaniec Z. Thermal degradation kinetics of PET/SWCNTs nanocomposites prepared by the in situ polymerization. J Therm Anal Calorim. 2014;115:451–60.

    Article  CAS  Google Scholar 

  29. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state. In: Bamford CH, Tipper CF, editors. Comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1980.

  30. Rajeshwari P. Kinetic analysis of the non-isothermal degradation of high-density polyethylene filled with multi-wall carbon nanotubes. J Therm Anal Calorim. 2016;123:1523–44.

    Article  CAS  Google Scholar 

  31. Vyazovkin S. On the phenomenon of variable activation energy for condensed phase reactions. New J Chem. 2000;24:913–6.

    Article  CAS  Google Scholar 

  32. Vyazovkin S, Wight CA. Isothermal and nonisothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–8.

    Article  CAS  Google Scholar 

  34. Brown ME. Stocktaking in the kinetic cupboard. J Therm Anal Calorim. 2005;82:665–9.

    Article  CAS  Google Scholar 

  35. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  36. Flynn JH, Wall LA. Direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  37. Kissinger HF. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  38. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Report Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  39. Tang W, Liu Y, Zhangand CH, Wang C. New approximate formula for arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  40. Jensen F. Introduction to computational chemistry. 2nd ed. Chichester: Wiley; 2007.

    Google Scholar 

  41. Vektariene A, Vektaris G, Svoboda J. A theoretical approach to the nucleophilic behavior of benzofused thieno[3,2-b]furans using DFT and HF based reactivity descriptors. Arkivoc. 2009;7:311–29.

    Google Scholar 

  42. Rauk A. Orbital interaction theory of organic chemistry. 2nd ed. New York: Wiley; 2001.

    Google Scholar 

  43. Cohen Y, Klein J, Rabinovitz M. Stable polycyclic anions: dianions from overcrowded ethylene. J Chem Soc Chem Commun. 1986;1071–3.

  44. Silverstein RM, Webster FX. Spectroscopic identification of organic compounds. 4th ed. Singapore: Wiley; 2004.

    Google Scholar 

  45. Cao JP, Zhao J, Zhao X, Zha JW, Hu GH, Dang ZM. Preparation and characterization of surface modified silicon carbide/polystyrene nanocomposites. J Appl Polym Sci. 2013;130:638–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muraleedharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarada, K., Muraleedharan, K. Thermal degradation and optical properties of SiC-infused polystyrene nanocomposites. J Therm Anal Calorim 126, 1809–1819 (2016). https://doi.org/10.1007/s10973-016-5709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5709-y

Keywords

Navigation