Skip to main content
Log in

Characterization of the residue of a commingled post-consumer plastic waste treatment plant: a thermal, spectroscopic and pyrolysis kinetic study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A plastic packaging residue provided by a central Italy recycling facility was the subject of study of the present paper. The aim is to propose the valorization of plastic film residue (PFR) through a pyrolysis process. The PFR was thermo-chemically characterized through heating value, proximate and ultimate analysis. Fourier transformed infrared measurements have shown that PFR is constituted by 92–95 mass% of polyethylene (PE) film, around 5 mass% of PP, polystyrene (PS) < 1 mass%, PET < 1 mass% and traces of foreign materials. The extremely high percentage (98.7 mass%) of volatile matter and the low content of ash (2.1 mass%), humidity (0.6 mass%) and chlorine (0.1 mass%) make PFR an optimum candidate as load of a pyrolytic reactor. Thermogravimetry (TG) experiments were carried out at five different heating rates (2, 5, 7, 10, 12 K min−1) to determine the kinetic parameters of pyrolysis (activation energy E, pre-exponential factor A and the reaction model). No significant variation of activation energy, calculated by an integral isoconversional method proposed by Vyazovkin, is observed with increasing the degree of conversion. An average value of 264 ± 5 kJ mol−1 was estimated. Then, the Coats–Redfern method and the compensation effect were used to determine the lnA versus α data (being 41.9 the average value within the 0.25 < α < 0.85 range) and the reaction mechanism (R2 contracting cylinder model). Furthermore, the minimum energy required to pyrolyze 1 kg of PFR, about 2.27 MJ, was estimated by differential scanning calorimetry. It corresponds to about 5.5% of the exploitable energy of the input material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Plastics Europe. Plastics—the facts 2018. An analysis of European latest plastics production, demand and waste data; 2018.

  2. Fondazione per lo sviluppo sostenibile. Italia del riciclo 2018 (in Italian); 2018.

  3. Directive 2004/12/EC of the European Parliament and of the Council amending Directive 94/62/EC on packaging and packaging waste; 2004.

  4. Directive 2018/852/EU Of The European Parliament and of the council of 30 May 2018 amending Directive 94/62/EC on packaging and packaging waste; 2018.

  5. European Commission. A circular economy for plastics—insights from research and innovation to inform policy and funding decisions; 2019.

  6. Al-Salem SM, Antelava A, Constantinou A, Manos G, Dutta A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manag. 2017;197:177–98.

    Article  CAS  Google Scholar 

  7. Blanco I. End-life prediction of commercial PLA used for food packaging through short term TGA experiments: real chance or low reliability. Chin J Polym Sci. 2014;32(6):681–9.

    Article  CAS  Google Scholar 

  8. Blanco I. Lifetime prediction of food and beverage packaging wastes. J Therm Anal Calorim. 2016;125(2):809–16.

    Article  CAS  Google Scholar 

  9. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  10. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  11. Das P, Tiwari P. Thermal degradation kinetics of plastics and model selection. Thermochim Acta. 2017;654:191–202.

    Article  CAS  Google Scholar 

  12. Peterson DJ, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    Article  CAS  Google Scholar 

  13. Ceamanos J, Mastral JF, Millera A, Aldea ME. Kinetics of pyrolysis of high density polyethylene. Comparison of isothermal and dynamic experiments. J Anal Appl Pyrol. 2002;65(2):93–110.

    Article  CAS  Google Scholar 

  14. Saha B, Ghoshal AK. Model-free kinetics analysis of decomposition of polypropylene over Al-MCM-41. Thermochim Acta. 2007;460:77–84.

    Article  CAS  Google Scholar 

  15. Khedri S, Elyasi S. Kinetic analysis for thermal cracking of HDPE: a new isoconversional approach. Polym Degrad Stabil. 2016;129:306–18.

    Article  CAS  Google Scholar 

  16. Chowlu ACK, Reddy PK, Ghoshal AK. Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low-density polyethylene (LDPE). Thermochimi Acta. 2009;485:20–5.

    Article  CAS  Google Scholar 

  17. Tuffi R, D’Abramo S, Cafiero LM, Trinca E, Vecchio Ciprioti S. Thermal behavior and pyrolytic degradation kinetics of polymeric mixtures from waste packaging plastics. Express Polym Lett. 2018;12(1):82–99.

    Article  CAS  Google Scholar 

  18. Aboulkas A, El Harfi K, El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energ Convers Manag. 2010;51:1363–9.

    Article  CAS  Google Scholar 

  19. Cafiero LM, Castoldi E, Tuffi R, Vecchio Ciprioti S. Identification and characterization of plastics from small appliances and kinetic analysis of their thermally activated pyrolysis. Polym Degrad Stabil. 2014;109:307–18.

    Article  CAS  Google Scholar 

  20. Vecchio Ciprioti S, Catauro M, Bollino F, Tuffi R. Thermal behavior and dehydration kinetic study of SiO2/PEG hybrid gel glasses. Polym Eng Sci. 2017;57:606–12.

    Article  CAS  Google Scholar 

  21. Santella C, Cafiero L, De Angelis D, La Marca F, Tuffi R, Vecchio Ciprioti S. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE). Waste Manag. 2016;54:143–52.

    Article  CAS  Google Scholar 

  22. Benedetti M, Cafiero L, De Angelis D, Dell’Era A, Pasquali M, Stendardo S, Tuffi R, Vecchio Ciprioti S. Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification. Front Environ Sci Eng. 2017;11(5):11–21.

    Article  Google Scholar 

  23. Beccagutti B, Cafiero L, Pietrantonio M, Pucciarmati S, Tuffi R, Vecchio Ciprioti S. Characterization of some real mixed plastics from WEEE: a focus on chlorine and bromine determination by different analytical methods. Sustainability. 2016;8:1107–23.

    Article  Google Scholar 

  24. Šimon P, Hynek D, Malíková M, Cibulková Z. Extrapolation of accelerated thermooxidative tests to lower temperatures applying non-Arrhenius temperature functions. J Therm Anal Calorim. 2008;93:817–21.

    Article  Google Scholar 

  25. Davis PJ, Rabinowitz P. Methods of numerical integration. 2nd ed. Cambridge: Academic Press; 1984. p. 51–198.

    Google Scholar 

  26. Vyazovkin S. Modification of the integral isoconversional method to account for variation of the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  27. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  28. Cafiero LM, Fabbri D, Trinca E, Tuffi R, Ciprioti Vecchio S. Thermal and spectroscopic (TG/DSC-FTIR) characterization of mixed plastics for materials and energy recovery under pyrolytic conditions. J Therm Anal Calorim. 2015;121(3):1111–9.

    Article  CAS  Google Scholar 

  29. Caballero BM, de Marco I, Adrados A, López-Urionabarrenechea A, Solar J, Gastelu N. Possibilities and limits of pyrolysis for recycling plastic rich waste streams rejected from phones recycling plants. Waste Manag. 2016;57:226–34.

    Article  CAS  Google Scholar 

  30. Wen J, Mark JE. Physical properties of polymers handbook. New York: AIP; 1996.

    Google Scholar 

  31. Silvarrey LSD, Phan AN. Kinetic study of municipal plastic waste. Int J Hydrogen Energy. 2016;41:16352–64.

    Article  Google Scholar 

  32. Vyazovkin S, Wight CA. Kinetics in solids. Ann Rev Phys Chem. 1997;48:125–49.

    Article  CAS  Google Scholar 

  33. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  34. Vecchio Ciprioti S, Di Rocco R, Ferragina C. Kinetic study of decomposition for Co(II)- and Ni(II)-1,10-phenanthroline complexes intercalated in γ-zirconium phosphate. J Therm Anal Calorim. 2009;97(3):805–10.

    Article  Google Scholar 

  35. Wang Z, Wei R, Ning X, Xie T, Wang J. Thermal degradation properties of LDPE insulation for new and aged fine wires. J Therm Anal Calorim. 2019;137:461–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Riccardo Tuffi or Stefano Vecchio Ciprioti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ippolito, N.M., Cafiero, L., Tuffi, R. et al. Characterization of the residue of a commingled post-consumer plastic waste treatment plant: a thermal, spectroscopic and pyrolysis kinetic study. J Therm Anal Calorim 138, 3323–3333 (2019). https://doi.org/10.1007/s10973-019-09003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09003-z

Keywords

Navigation