Skip to main content
Log in

Thermal behavior and physicochemical studies of phase transitions before the decomposition in the selenate–tellurate protonic conductor material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis confirmed the presence of the phase transition at T = 320 K in the Cs2SeO4·H6TeO6 (CsSeTe) material. The structural study carried out at T = 360 K shows that this compound passes from the monoclinic system with the space group \(P2_{1} /c\) at room temperature, to the trigonal system with the space group \(R\bar{3}m\). At room temperature, the anionic groups are well ordered and stable, whereas after the transition at T = 320 K, the selenate groups change their orientation and the tellurate polyhedra change their positions. The high-temperature vibrational studies, carried out in a temperature range of 289–353 K, confirm the presence and nature of the transition detected by thermal analysis. The conductivity evolution versus temperature shows the presence of an ionic–protonic conduction phase transition at T = 490 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Litaiem H, Grasia-Granda S, Ktari L, Dammak M. The structural behaviour before the ionic–protonic superconduction phase transition and thermal properties in the caesium sulphate arsenate tellurate compound. J Therm Anal Calorim. 2015;123:391–400. https://doi.org/10.1007/s10973-015-4953-x.

    Article  CAS  Google Scholar 

  2. Litaiem H, Dammak M, Mhiri T, Cousson A. Structural, conductivity and dielectric studies in (NH4)2SeO4·Te(OH)6. J Alloys Compd. 2005;396:34–9. https://doi.org/10.1002/chin.200536012.

    Article  CAS  Google Scholar 

  3. Dammak M, Litaiem H, Mhiri T. Structural, thermal and dielectric studies in Na2SeO4·Te(OH)6·H2O. J Alloys Compd. 2006;416:228–35. https://doi.org/10.1016/j.jallcom.2005.08.040.

    Article  CAS  Google Scholar 

  4. Dammak M, Litaiem H, Gravereau P, Mhiri T, Kolsi AW. X-ray and electrical conductivity studies in the rubidium selenate tellurate. J Alloys Compd. 2007;442:316–9. https://doi.org/10.1016/j.jallcom.2006.10.175.

    Article  CAS  Google Scholar 

  5. Oxford Diffraction. CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England; 2010.

  6. Sheldrick GM. SHELXS97: program for the refinement of crystal structures. Gottingen: University of Gottingen; 1986.

    Google Scholar 

  7. Sheldrick GM. SHELXL97: program for the refinement of crystal structures. Gottingen: University of Gottingen; 1997.

    Google Scholar 

  8. Putz H, Brandenburg K. DIAMOND version 3.2.i, Crystal impact, Gb R, Kreuzherrenstr, Germany; 1997–2012.

  9. Sharlo G. Methods of analytical chemistry. Moscow: Inostrannaya Literatura Publication House; 1969.

    Google Scholar 

  10. Azaroval L, Burger M. X-ray powder method. Moscow: Peace; 1961.

    Google Scholar 

  11. Baur WH. The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Cryst. 1974;B30:1195–215. https://doi.org/10.1107/s0567740874004560.

    Article  Google Scholar 

  12. Piecha A, Gagor A, Pietraszko A, Jakubas R. Unprecedented solid-state chemical reaction—from (C3N2H5)3SbBr6·H2O to (C3N2H5)5Sb2Br11. From centrosymmetric to non-centrosymmetric crystal structure. J Solid State Chem. 2010;183:3058–66. https://doi.org/10.1016/j.jssc.2010.10.020.

    Article  CAS  Google Scholar 

  13. Fabry J, Loub J, Feltl L. A study of the thermal decompositions of orthotelluric acid, urea and the orthotelluric acid adduct with urea. J Therm Anal. 1982;24:95–100. https://doi.org/10.1007/BF01914804.

    Article  CAS  Google Scholar 

  14. Jiao QJ, Zhu YL, Xing JC, Ren H, Huang H. Thermal decomposition of RDX/AP by TG–DSC–MS–FTIR. J Therm Anal Calorim. 2014;116:1125–31. https://doi.org/10.1007/s10973-013-3621-2.

    Article  CAS  Google Scholar 

  15. Karvinen S, Lumme K, Niinistö L. Thermal decomposition of lanthanum selenate pentahydrate in air and nitrogen. J Therm Anal. 1987;32:919–26. https://doi.org/10.1007/BF01913778.

    Article  CAS  Google Scholar 

  16. Barfiwala UA, Ajgaonkar VR. Thermal decomposition of lighter lanthanide selenate hydrates and their solid solutions. J Therm Anal. 1995;44:1463–72. https://doi.org/10.1007/BF02549232.

    Article  CAS  Google Scholar 

  17. Gaglieri C, Alarcon RT, Moura A, Caires FJ. Nickel selenate: a deep and efficient characterization. J Therm Anal Calorim. 2020;139:1707–15. https://doi.org/10.1007/s10973-019-08623-9.

    Article  CAS  Google Scholar 

  18. Dammak M, Mhiri T, Jaud J, Savariault JM. Structural study of the two new caesium sulfate and selenate tellurate Cs2SO4·Te(OH)6 and Cs2SeO4·Te(OH)6. J Inorg Mater. 2001;3:861–73. https://doi.org/10.1016/s1466-6049(01)00094-0.

    Article  CAS  Google Scholar 

  19. Ghorbel K, Litaiem H, Ktari L, Grasia-Granda S, Dammak M. X-ray single crystal, thermal analysis and vibrational study of (NH4)2(SO4)0.92H(AsO4)0.08·Te(OH)6. J Mol Struct. 2015;1079:225–31. https://doi.org/10.1016/j.molstruc.2014.09.011.

    Article  CAS  Google Scholar 

  20. Litaiem H, Dammak M, Ktari L, Kammoun S, Mhiri T. Phase transitions and vibrational study of Rb2SeO4·Te(OH)6 and Rb1.12(NH4)0.88SO4·Te(OH)6. Phase Transit. 2004;77:929–40. https://doi.org/10.1080/01411590410001730708.

    Article  CAS  Google Scholar 

  21. Ghorbel K, Litaiem H, Ktari L, Grasia-Granda S, Dammak M. Synthesis, structural study and phase transitions characterization by thermal analysis and vibrational spectroscopy of an ammonium rubidium arsenate tellurate. Chem Res Chin Univ. 2016;32:902–11. https://doi.org/10.1007/s40242-016-6056-z.

    Article  CAS  Google Scholar 

  22. Dammak M, Kemakhem H, Mhiri T, Kolsi AW, Daoud A. Structural and vibrational study of K2SeO4·Te(OH)6 material. J Solid State Chem. 1999;145:612–8. https://doi.org/10.1006/jssc.1999.8254.

    Article  CAS  Google Scholar 

  23. Dammak M, Hadrich A, Mhiri T. Structural, dielectric and vibrational studies in the dipotassium sulfate selenate tellurate mixed solid solution. J Alloys Compd. 2007;428:8–16. https://doi.org/10.1016/j.jallcom.2006.03.045.

    Article  CAS  Google Scholar 

  24. Frost RL, Cejka J, Sejkora J, Plasil J, Reddy BJ, Keeffe EC. Raman spectroscopic study of a hydroxy-arsenate mineral containing bismuth–atelestite Bi2O(OH)(AsO4). Spectroc Acta A. 2011;78:494–6. https://doi.org/10.1016/j.saa.2010.11.016.

    Article  CAS  Google Scholar 

  25. Jrifi A, El Jazouli A, Chaminade JP, Couzi M. Synthesis, crystal structure and vibrational spectra of Sr0.5Zr2(AsO4)3. Powder Diffr. 2009;24:200–4. https://doi.org/10.1154/1.3187160.

    Article  CAS  Google Scholar 

  26. Frost RL. Raman and infrared spectroscopy of arsenates of the roselite and fairfieldite mineral subgroups. Spectrochim Acta A. 2009;71:1788–94. https://doi.org/10.1016/j.saa.2008.06.039.

    Article  CAS  Google Scholar 

  27. Frost RL, Bahfenne S. Thermal analysis and hot-stage Raman spectroscopy of the basic copper arsenate mineral. J Therm Anal Calorim. 2010;100:89–94. https://doi.org/10.1007/s10973-009-0599-x.

    Article  CAS  Google Scholar 

  28. Verma VP, Khushu A. Thermal and other studies on bivalent metal selenites. J Therm Anal. 1989;35:1157–63. https://doi.org/10.1007/BF01913033.

    Article  CAS  Google Scholar 

  29. Genieva S, Yankova R, Baikusheva-Dimitrova G, Halachev N. Synthesis and characterization of Hf(SO4)2(H2O)4 and Hf(SeO3)(SeO4)(H2O)4. J Therm Anal Calorim. 2016;124:1595–600. https://doi.org/10.1007/s10973-016-5275-3.

    Article  CAS  Google Scholar 

  30. Fersi MA, Chaabane I, Gargouri M, Bulou A. Raman scattering study of temperature induced phase transition in [C8H10NO]2 [ZnCl4]. AIP Adv. 2015;5:087127. https://doi.org/10.1063/1.4928518.

    Article  CAS  Google Scholar 

  31. Ben Gzaiel M, Ouslati A, Lhoste J, Gargouri M. Synthesis, crystal structure and high temperature phase transition in the new organic–inorganic hybrid [N(C4H9)4]3Zn2Cl7H2O crystal. J Mol Struct. 2015;1089:153–60. https://doi.org/10.1016/j.molstruc.2015.01.040.

    Article  CAS  Google Scholar 

  32. Hajlaoui S, Chaabane I, Ouslati A, Guidra K, Bulou A. Raman scattering investigation of the high temperature phase transition in [N(C3H7)4]2 SnCl6. Spectrochim Acta A. 2015;136:457–552. https://doi.org/10.1016/j.saa.2014.09.068.

    Article  CAS  Google Scholar 

  33. Ben Salah M, Becker P, Carabatos-Nédelec C. Thermal analysis, Raman scattering and infrared spectroscopy versus temperature of hydrogen bonds in sodium p-nitrophenolate dihydrate (NPNa), [Na(C6H4ONO2)]2·2H2O. Phys Stat Sol(b). 2003;2:470–9. https://doi.org/10.1002/pssb.200301830.

    Article  CAS  Google Scholar 

  34. Mtioui O, Litaiem H, Garcia-Granda S, Ktari L, Dammak M. Thermal behavior and dielectric and vibrational studies of Cs2(HAsO4)0.32 (SO4)0.68·Te(OH)6. Ionics. 2014;21:411–20. https://doi.org/10.1007/s11581-014-1196-y.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Hamadi Khemakhem for his help in the Raman spectroscopy measurements. The authors are also thankful to Mr. Ozhan Hammami for the checking and grammatical editing of this article in English.

Funding

This work is supported by the Ministry of the Higher Education and Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hejer Litaiem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouti, I., Litaiem, H. & García-Granda, S. Thermal behavior and physicochemical studies of phase transitions before the decomposition in the selenate–tellurate protonic conductor material. J Therm Anal Calorim 145, 2295–2306 (2021). https://doi.org/10.1007/s10973-020-09817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09817-2

Keywords

Navigation