Skip to main content
Log in

The structural behaviour before the ionic–protonic superconduction phase transition and thermal properties in the caesium sulphate arsenate tellurate compound

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Caesium sulphate tellurate arsenate (CsSAsTe) crystallizes at 373 K in the trigonal system \( {\text{R}}\bar{3}m \). The crystal structures are built from isolated (\( {\text{HAsO}}_{4}^{2 - } , {\text{SO}}_{4}^{2 - } \)) tetrahedra and (\( {\text{TeO}}_{6}^{6 - } \)) octahedra, and they form tunnels where Cs+ cations and some hydrogen atoms are placed. Ac impedance measurements revealed that, upon heating, the compound undergoes a transformation into a phase of high conductivity. The charge carrier transport mechanism is obtained by comparison of ΔE f with ΔE σ. The activation energies for the (CsSAsTe) compound calculated, respectively, from the modulus and impedance spectra are approximately close, suggesting that transport properties above and below the superprotonic phase transition is probably due to H+ protons hopping mechanism. Thermal analysis at high temperature, DSC, DTA, TG, Ms/z = 18 and Ms/z = 32 confirms that the decomposition of this material starts at about T = 520 K, and it is manifested by the release of water vapour and O2 gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Khemakhem H. Dielectric and Raman investigations on M2(SO4)·Te(OH)6 (M=K, Rb and Cs). Ferroelectrics. 1999;234:47–9.

    Article  CAS  Google Scholar 

  2. Bechibani I, Litaiem H, Ktari L, Garcia-Granda S, Dammak M. Investigation of structural phase transition behavior by thermal analysis, high temperature X-ray single crystal and vibrational study of Rb2 HAsO4·Te(OH)6 compound. Mol Struct. 2014;1075:579–88.

    Article  CAS  Google Scholar 

  3. Ghorbel K, Litaiem H, Ktari L, Garcia-Granda S, Dammak M. X-ray single crystal, thermal analysis and vibrational study of (NH4)2(SO4)0.92H(AsO4)0.08·Te(OH)6. Mol Struct. 2014;1079:213–25.

    Google Scholar 

  4. Chabchoub N, Khemakhem H, Gargouri M. Ferroelectricity and superionic conduction in telluric sulfates MM′(SO)4·Te(OH) (M, M′=K, Rb and Cs). J Alloy Comp. 2003;359:84–90.

    Article  CAS  Google Scholar 

  5. Dammak M, Ktari L, Cousson A, Mhiri T. Structural and conductivity study of a new protonic conductor Cs0.86(NH4)1.14(SO4)·Te(OH)6. Solid State Chem. 2005;178:2109–16.

    Article  CAS  Google Scholar 

  6. Dammak M, Mhiri T, Jaud J, Savariault JM. Structural study of the two new caesium sulfate and selenate tellurate Cs2SO4·Te(OH)6 and Cs2SeO4·Te(OH)6. J Inorg Mater. 2001;3:861–73.

    Article  CAS  Google Scholar 

  7. Dammak M, Khemakhem H, Mhiri T. Superprotonic conduction and ferroelectricity in addition cesium sulfate tellurate Cs2SO4·Te(OH)6. J Phys Chem Solids. 2001;62:2069–74.

    Article  CAS  Google Scholar 

  8. Colomban P. Proton conductors: solids, membranes, and gels—materials and devices. Chemistry of solid state materials. Cambridge; 1992.

  9. CrysAlis CCD and CrysAlis RED. Yarnton, Oxfordshire: Oxford Diffraction Ltd; 2010.

  10. Sheldrick GM. SHELXS97: program for the refinement of crystal structures. Germany: University of Gottingen; 1986.

    Google Scholar 

  11. Sheldrick GM. SHELXL97: program for the refinement of crystal structures. Germany: University of Gottingen; 1997.

    Google Scholar 

  12. Litaiem H, Ktari L, Garcia-Granda S, Dammak M. Order disorder phase transitions in the caesium sulphate arsenate tellurate compound. Mater Res Bull 2015;70:506–13.

    Article  Google Scholar 

  13. Novak A. Hydrogen bonding in solids: correlation of spectroscopic and crystallographic data. In: Structure and bonding; 1974.

  14. Megaw HD. Crystal structure: working approach. Philadelphia: W.B. Saunders; 1973.

    Google Scholar 

  15. Faby J, Loub J, Feltl L. Study of the thermal decompositions of orthotelluric acid, urea and the orthotelluric acid adduct with urea. J Therm Anal. 1982;24:95–100.

    Article  Google Scholar 

  16. Jiao QJ, Zhu YL, Xing JC, Ren H, Huang H. Thermal decomposition of RDX/AP by TG–DSC–MS–FTIR. J Therm Anal Calorim. 2014;116:1125–31.

    Article  CAS  Google Scholar 

  17. Frost RL, Locke AJ, Martens WN. Thermogravimetric analysis of wheatleyite Na2Cu2 + (C2O4)2·2H2O. J Therm Anal Calorim. 2008;93:993–7.

    Article  CAS  Google Scholar 

  18. Dokiya M, Kameyama T, Fukuda K, Kotera Y. The study of thermochemical hydrogen preparation—III: an oxygen-evolving step through the thermal splitting of sulfuric acid. Bull Chem Soc Jpn. 1977;50(10):2657–60.

    Article  CAS  Google Scholar 

  19. Diosa JE, Vargas RA, Albinson I, Mellander BE. Dielectric relaxation studies in Cs2SO4. Ferroelectrics. 2006;333:253–8.

    Article  CAS  Google Scholar 

  20. Funke K, Banhatti RD. Ionic motion in materials with disordered structures. Solid State Ion. 2006;177:1551–7.

    Article  CAS  Google Scholar 

  21. Jonscher AK. Universal relaxation law. London: Chelsea Dielectric Press; 1996. p. 143.

    Google Scholar 

  22. Chowdari BVR, Gopalakrishnan R. Ac conductivity analysis of glassy silver iodomolybdate system. Solid State Ion. 1987;23:225–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Higher Education and Scientific Research of Tunisia and Spanish MINECO MAT2013-40950-R and ERDF for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Litaiem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litaiem, H., Garcia-Granda, S., Ktari, L. et al. The structural behaviour before the ionic–protonic superconduction phase transition and thermal properties in the caesium sulphate arsenate tellurate compound. J Therm Anal Calorim 123, 391–400 (2016). https://doi.org/10.1007/s10973-015-4953-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4953-x

Keywords

Navigation