Skip to main content
Log in

Effect of heating rate on the sinterability, crystallization, and mechanical properties of sintered glass–ceramics from granite waste

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Huge amounts of granite wastes have been generated in the granite-processing industry and should be properly disposed to reduce the negative impacts on the environment and health care. In this work, waste granite powder was modified and sintered to prepare high-strength and tough glass–ceramics. The heating rate was studied to clarify its effects on the sinterability, crystallization, and mechanical properties of glass–ceramics. With the increase in heating rate, the densification of sintered glass–ceramics was promoted by the liquid glassy phase from the microcline phase. The glass–ceramics were strengthened and toughened simultaneously due to the improved densification and increased crystallinity. The toughening mechanism was attributed to the crack bridging, deflection, and branching. The maximum flexural strength of 143 MPa and fracture toughness of 2.1 MPa m1/2 were achieved with a heating rate of 50 °C min−1, far superior to that of natural granite. The crystal structure of sintered glass–ceramics indicated the main crystalline phase of anorthite. These glass–ceramics with excellent mechanical properties promise the practical reutilization of granite wastes in the construction tiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Careddu N, Siotto G, Siotto R, Tilocca C. From landfill to water, land and life: the creation of the Centre for stone materials aimed at secondary processing. Resour Policy. 2013;38:258–65.

    Article  Google Scholar 

  2. Furcas C, Balletto G. Increasing the value of dimension stone waste for a more achievable sustainability in the management of nonrenewable resources. J Solid Waste Technol Manag. 2014;40:185–96.

    Article  Google Scholar 

  3. Singh S, Khan S, Khandelwal R, Chugh A, Nagar R. Performance of sustainable concrete containing granite cutting waste. J Clean Prod. 2016;119:86–98.

    Article  CAS  Google Scholar 

  4. Medina G, Saez del Bosque IF, Frías M, Sanchez de Rojas MI, Medina C. Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): scientific and technical considerations. J Clean Prod. 2017;148:467–76.

    Article  CAS  Google Scholar 

  5. Baltakys K, Sarapajevaite G, Dambrauskas T. The influence of different additives on the early-stage hydration of calcium aluminate cement. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7153-7.

    Article  Google Scholar 

  6. Sadek DM, El-Attar MM, Ali HA. Reusing of marble and granite powders in self-compacting concrete for sustainable development. J Clean Prod. 2016;121:19–32.

    Article  Google Scholar 

  7. Acchar W, Ramalho EG, Fonsecar YA, Hotza D, Segadaes AM. Using granite rejects to aid densification and improve mechanical properties of alumina bodies. J Mater Sci. 2005;40:3905–9.

    Article  CAS  Google Scholar 

  8. Torres P, Fernandes HR, Olhero S, Ferreira JMF. Incorporation of wastes from granite rock cutting and polishing industries to produce roof tiles. J Eur Ceram Soc. 2009;29:23–30.

    Article  CAS  Google Scholar 

  9. El-Maghraby HF, El-Omla MM, Bondioli F, Naga SM. Granite as flux in stoneware tile manufacturing. J Eur Ceram Soc. 2011;31:2057–63.

    Article  CAS  Google Scholar 

  10. Silva MTB, Hermo BS, Garcıa-Rodeja E, Freire NV. Reutilization of granite powder as an amendment and fertilizer for acid soils. Chemosphere. 2005;61:993–1002.

    Article  CAS  Google Scholar 

  11. Sivrikaya O, Kıyıldı KR, Karaca Z. Recycling waste from natural stone processing plants to stabilize clayey soil. Environ Earth Sci. 2014;71:4397–407.

    Article  CAS  Google Scholar 

  12. Aydin G, Kaya S, Karakurt I. Utilization of solid-cutting waste of granite as an alternative abrasive in abrasive waterjet cutting of marble. J Clean Prod. 2017;159:241–7.

    Article  Google Scholar 

  13. Tanaka M, Suzuki S. β-Wollastonite precipitated glass–ceramic synthesized from waste granite. J Ceram Soc Jpn. 1999;107:627–32.

    Article  CAS  Google Scholar 

  14. Khater GA. Diopside-anorthite-wollastonite glass–ceramics based on waste from granite quarries. Glass Technol Eur J Glass Sci Technol A. 2010;51:6–12.

    CAS  Google Scholar 

  15. Kang JF, Wang J, Cheng JS, Yuan J, Hou YS, Qian SY. Crystallization behavior and properties of CaO–MgO–Al2O3–SiO2 glass–ceramics synthesized from granite wastes. J Non-Cryst Solids. 2017;457:111–5.

    Article  CAS  Google Scholar 

  16. Binhussaina MA, Marangoni M, Bernardob E, Colombo P. Sintered and glazed glass–ceramics from natural and waste raw materials. Ceram Int. 2014;40:3543–51.

    Article  CAS  Google Scholar 

  17. Guzmán-Carrilloa HR, Pérezb JM, Romero M. Crystallisation of nepheline-based glass frits through fast-firing process. J Non-Cryst Solids. 2017;470:53–60.

    Article  CAS  Google Scholar 

  18. Cetin S, Marangoni M, Bernardo E. Lightweight glass–ceramic tiles from the sintering of mining tailings. Ceram Int. 2015;41:5294–300.

    Article  CAS  Google Scholar 

  19. Bernardo E, Scarinci G, Edme E, Michon U, Planty N. Fast-sintered gehlenite glass–ceramics from plasma-vitrified municipal solid waste incinerator fly ashes. J Am Ceram Soc. 2009;92:528–30.

    Article  CAS  Google Scholar 

  20. Zhang HH, Xu YL, Wang B, Zhang X, Yang JF, Niihara K. Effects of heating rate on the microstructure and mechanical properties of rapid vacuum sintered translucent alumina. Ceram Int. 2015;41:12499–503.

    Article  CAS  Google Scholar 

  21. Niihara K, Morena R, Hasselman DPH. Evaluation of K IC of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett. 1982;1:13–6.

    Article  CAS  Google Scholar 

  22. Vieira CMF, Soares TM, Sánchez R, Monteiro SN. Incorporation of granite waste in red ceramics. Mater Sci Eng A. 2004;373:115–21.

    Article  CAS  Google Scholar 

  23. Bayel DK, Karaca Z, Onen V, Deliormanli AH. The relationship between mineral content and flocculant characteristics for slurry waste water recycling at marble processing plants. Mine Water Environ. 2016;35:332–6.

    Article  CAS  Google Scholar 

  24. Hojamberdiev M, Eminov A, Xu YH. Utilization of muscovite granite waste in the manufacture of ceramic tiles. Ceram Int. 2011;37:871–6.

    Article  CAS  Google Scholar 

  25. Kappert EJ, Bouwmeester HJM, Benes NE, Nijmeijer A. Kinetic analysis of the thermal processing of silica and organosilica. J Phys Chem B. 2014;118:5270–7.

    Article  CAS  PubMed  Google Scholar 

  26. Levin I, Brandon D. Metastable alumina polymorphs: crystal structure and transition sequences. J Am Ceram Soc. 1998;81:1995–2012.

    Article  CAS  Google Scholar 

  27. Hartlieb P, Toifl M, Kuchar F, Meisels R, Antretter T. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Miner Eng. 2016;91:34–41.

    Article  CAS  Google Scholar 

  28. Borodina NS, Fershtater GB, Votyakov SL. The oxidation ratio of iron in coexisting biotite and hornblende from granitic and metamorphic rocks: the role of P, T and f(O2). Can Mineral. 1999;37:1423–9.

    CAS  Google Scholar 

  29. German RM, Suri P, Park SJ. Review: liquid phase sintering. J Mater Sci. 2009;44:1–39.

    Article  CAS  Google Scholar 

  30. Fang YS, Hu LX. The important mineral ingredients of ceramics: feldspars. Bull Chin Ceram Soc. 1980;1:67–73.

    Google Scholar 

  31. Fan WD, Liu B, Yang J, Zhang SG. The influence of Na2O on the fast diffusion layer around diopside crystals. RSC Adv. 2017;7:9417–22.

    Article  CAS  Google Scholar 

  32. Bernardo E, Dattoli A, Bonomo E, Esposito L, Rambaldi E, Tucci A. Application of an industrial waste glass in “glass–ceramic stoneware”. Int J Appl Ceram Technol. 2011;8:1153–62.

    Article  CAS  Google Scholar 

  33. Ponsot I, Bernardo E. Self glazed glass ceramic foams from metallurgical slag and recycled glass. J Clean Prod. 2013;59:245–50.

    Article  CAS  Google Scholar 

  34. Marangoni M, Secco M, Parisatto M, Artioli G, Bernardo E, Colombo P, Altlasi H, Binmajed M, Binhussain M. Cellular glass–ceramics from a self foaming mixture of glass and basalt scoria. J Non-Cryst Solids. 2014;403:38–46.

    Article  CAS  Google Scholar 

  35. Karamanov A, Aloisi M, Pelino M. Sintering behavior of a glass obtained from MSWI ash. J Eur Ceram Soc. 2005;25:1531–40.

    Article  CAS  Google Scholar 

  36. Wang SM, Kuang FH, Yan QZ, Ge CC, Qi LH. Crystallization and infrared radiation properties of iron ion doped cordierite glass–ceramics. J Alloys Compd. 2011;509:2819–23.

    Article  CAS  Google Scholar 

  37. Chen MH, Zhu SL, Wang FH. Strengthening mechanisms and fracture surface characteristics of silicate glass matrix composites with inclusion of alumina particles of different particle sizes. Phys B. 2013;413:15–20.

    Article  CAS  Google Scholar 

  38. Lu JS, Lu ZY, Peng CH, Li XB, Jiang HL. Influence of particle size on sinterability, crystallisation kinetics and flexural strength of wollastonite glass–ceramics from waste glass and fly ash. Mater Chem Phys. 2014;148:449–56.

    Article  CAS  Google Scholar 

  39. Livanov K, Yang L, Nissenbaum A, Wagner HD. Interphase tuning for stronger and tougher composites. Sci Rep UK. 2016;6:26305-1–9.

    Google Scholar 

  40. Kotoul M, Pokluda J, Sandera P, Dlouhy I, Chlup Z, Boccaccini AR. Toughening effects quantification in glass matrix composite reinforced by alumina platelets. Acta Mater. 2008;56:2908–18.

    Article  CAS  Google Scholar 

  41. Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10:817–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the China Scholarship Council (Grant No. [2016] 5113) and the Postgraduate Innovation and Entrepreneurship Fund of Nanchang Hangkong University (YC2017070). The authors are grateful to Dr. Delai Ouyang for the enthusiastic assistance in the mechanical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Li, Y., Zou, C. et al. Effect of heating rate on the sinterability, crystallization, and mechanical properties of sintered glass–ceramics from granite waste. J Therm Anal Calorim 135, 1977–1985 (2019). https://doi.org/10.1007/s10973-018-7346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7346-0

Keywords

Navigation