Skip to main content
Log in

Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present article deals with the CFD simulation of natural convection heat transfer of a hybrid nanofluid in an inverted T-shaped cavity partitioned and saturated by two different types of porous media. Suspensions of organic and inorganic nanoparticles, i.e., MWCNTs and Fe3O4, in water were selected as the working fluid. The macroscopic conservation equations for the flow field and heat transfer were modeled via volume averaging the microscopic equations inside porous media over a representative elementary volume. The effects of many parameters were investigated. The parameters included the Rayleigh number (Ra = 103–106), porosity coefficient ratio of two porous media (εr = 0.5–1.8), volume fraction of the dispersed nanoparticles (\(\varphi\) = 0–0.003), Richardson number (Ri = 0.1–20), Darcy number ratio of two porous media (Dar = 0.01, 1, 100) and thermal conductivity ratio of two porous media (kr = 0.2, 0.4, 1, 5). The results showed that, with an increase in the Rayleigh number, porosity ratio and Darcy number ratio and decrease in the thermal conductivity ratio, the averaged Nusselt number increased.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AR:

Cavity obstruction ratio

Da :

Darcy number

k :

Thermal conductivity

L :

Height of cavity

L 1 :

Width of cavity

Nu :

Nusselt number

p :

Pressure

Pr :

Prandtl number

T :

Temperature

u, v :

Nondimensional velocity components

W :

Length of cavity

W 1 :

Width of cavity

x, y :

Coordinate

ε :

Porosity

α :

Thermal diffusivity

\(\varphi\) :

Volume fraction

β :

Thermal expansion coefficient

μ :

Dynamic viscosity

ρ :

Viscosity

c:

Cold

f:

Fluid

h:

Hot

nf:

Nanofluid

*:

Dimensional parameters

References

  1. Chol SU, Estman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed. 1995;231:99–106.

    Google Scholar 

  2. Mohebbi R, Izadi M, Delouei AA, Sajjadi H. Effect of MWCNT–Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Thermal Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7483-5.

    Article  Google Scholar 

  3. Matori A, Mohebbi R, Hashemi Z, Ma Y. Lattice Boltzmann study of multi-walled carbon nanotube (MWCNT)–Fe3O4/water hybrid nanofluids natural convection heat transfer in a Π-shaped cavity equipped by hot obstacle. J Thermal Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7881-8.

    Article  Google Scholar 

  4. Nazari M, Kayhani MH, Mohebbi R. Heat transfer enhancement in a channel partially filled with a porous block: lattice Boltzmann method. Int J Mod Phys C. 2013;24:1350060.

    Article  CAS  Google Scholar 

  5. Abchouyeh MA, Mohebbi R, Fard OS. Lattice Boltzmann simulation of nanofluid natural convection heat transfer in a channel with a sinusoidal obstacle. Int J Mod Phys C. 2018;29:1850079.

    Article  CAS  Google Scholar 

  6. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Thermal Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7518-y.

    Article  Google Scholar 

  7. Ma Y, Mohebbi R, Rashidi MM, Yang Z, Sheremet MA. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int J Heat Mass Transf. 2019;130:123–34.

    Article  CAS  Google Scholar 

  8. Ma Y, Mohebbi R, Rashidi MM, Yang Z. MHD forced convection of MWCNT–Fe3O4/water hybrid nanofluid in a partially heated τ-shaped channel using LBM. J Thermal Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7788-4.

    Article  Google Scholar 

  9. Izadi M, Mohebbi R, Chamkha A, Pop I. Effects of cavity and heat source aspect ratios on natural convection of a nanofluid in a C-shaped cavity using lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2018;28:1930–55.

    Article  Google Scholar 

  10. Mohebbi R, Izadi M, Chamkha AJ. Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid. Phys Fluids. 2017;29:122009.

    Article  CAS  Google Scholar 

  11. Ranjbar P, Mohebbi R, Heidari H. Numerical investigation of nanofluids heat transfer in a channel consists of rectangular cavities by lattice Boltzmann method. Int J Modern Phys C. 2018;29(11):1850108.

    Article  CAS  Google Scholar 

  12. Izadi M, Hoghoughi G, Mohebbi R, Sheremet M. Nanoparticle migration and natural convection heat transfer of Cu–water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model. J Mol Liq. 2018;261:357–72.

    Article  CAS  Google Scholar 

  13. Mohebbi R, Lakzayi H, Sidik NAC, Japar WMAA. Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. Int J Heat Mass Transf. 2018;117:425–35.

    Article  CAS  Google Scholar 

  14. Mohebbi R, Rashidi MM, Izadi M, Sidik NAC, Xian HW. Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int J Heat Mass Transf. 2018;117:1291–303.

    Article  CAS  Google Scholar 

  15. Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a ┴ shaped cavity filled by a MWCNT–Fe3O4/water hybrid nanofluids using LBM. Chem Eng Process Process Intensif. 2018;125:56–66.

    Article  CAS  Google Scholar 

  16. Izadi M, Shahmardan MM, Maghrebi MJ, Behzadmehr A. Numerical study of developed laminar mixed convection of Al2O3/water nanofluid in an annulus. Chem Eng Commun. 2013;200:878–94.

    Article  CAS  Google Scholar 

  17. Izadi M, Shahmardan MM, Behzadmehr A. Richardson number ratio effect on laminar mixed convection of a nanofluid flow in an annulus. Int J Comput Methods Eng Sci Mech. 2013;14:304–16.

    Article  CAS  Google Scholar 

  18. Izadi M, Behzadmehr A, Shahmardan MM. Effects of inclination angle on laminar mixed convection of a nanofluid flowing through an annulus. Chem Eng Commun. 2015;202:1693–702.

    Article  CAS  Google Scholar 

  19. Mehryan SA, Izadi M, Sheremet MA. Analysis of conjugate natural convection within a porous square enclosure occupied with micropolar nanofluid using local thermal non-equilibrium model. J Mol Liq. 2018;250:353–68.

    Article  CAS  Google Scholar 

  20. Noghrehabadi A, Behseresht A, Ghalambaz M, Behseresht J. Natural-convection flow of nanofluids over vertical cone embedded in non-Darcy porous media. J Thermophys Heat Transf. 2013;27:334–41.

    Article  CAS  Google Scholar 

  21. Noghrehabadi A, Behseresht A, Ghalambaz M. Natural convection of nanofluid over vertical plate embedded in porous medium: prescribed surface heat flux. Appl Math Mech. 2013;34:669–86.

    Article  Google Scholar 

  22. Behseresht A, Noghrehabadi A, Ghalambaz M. Natural-convection heat and mass transfer from a vertical cone in porous media filled with nanofluids using the practical ranges of nanofluids thermo-physical properties. Chem Eng Res Des. 2014;92:447–52.

    Article  CAS  Google Scholar 

  23. Hoghoughi G, Izadi M, Oztop HF, Abu-Hamdeh N. Effect of geometrical parameters on natural convection in a porous undulant-wall enclosure saturated by a nanofluid using Buongiorno’s model. J Mol Liq. 2018;255:148–59.

    Article  CAS  Google Scholar 

  24. Ghalambaz M, Behseresht A, Behseresht J, Chamkha A. Effects of nanoparticles diameter and concentration on natural convection of the Al2O3–water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv Powder Technol. 2015;26:224–35.

    Article  CAS  Google Scholar 

  25. Ghalambaz M, Sheremet MA, Pop I. Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. PLoS ONE. 2015;10:e0126486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Varol Y, Oztop HF, Pop I. Numerical analysis of natural convection for a porous rectangular enclosure with sinusoidally varying temperature profile on the bottom wall. Int Commun Heat Mass Transf. 2008;35:56–64.

    Article  CAS  Google Scholar 

  27. Izadi M, Mohebbi R, Delouei AA, Sajjadi H. Natural convection of a Magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields. Int J Mech Sci. 2019;151:154–169.

    Article  Google Scholar 

  28. Beckermann C, Ramadhyani S, Viskanta R. Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. J Heat Transf. 1987;109:363–70.

    Article  CAS  Google Scholar 

  29. Baytaş AC, Liaqat A, Groşan T, Pop I. Conjugate natural convection in a square porous cavity. Heat Mass Transf. 2001;37:467–73.

    Article  Google Scholar 

  30. Nield DA, Kuznetsov AV. The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transf. 2009;52:5792–5.

    Article  CAS  Google Scholar 

  31. Chamkha AJ, Ismael MA. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int J Thermal Sci. 2013;67:135–51.

    Article  CAS  Google Scholar 

  32. Bourantas GC, Skouras ED, Loukopoulos VC, Burganos VN. Heat transfer and natural convection of nanofluids in porous media. Eur J Mech B/Fluids. 2014;43:45–56.

    Article  Google Scholar 

  33. Hajipour M, Dehkordi AM. Mixed-convection flow of Al2O3–H2O nanofluid in a channel partially filled with porous metal foam: experimental and numerical study. Exp Thermal Fluid Sci. 2014;53:49–56.

    Article  CAS  Google Scholar 

  34. Nguyen MT, Aly AM, Lee S-W. Natural convection in a non-Darcy porous cavity filled with Cu–water nanofluid using the characteristic-based split procedure in finite-element method. Numer Heat Transf Part A Appl. 2015;67:224–47.

    Article  CAS  Google Scholar 

  35. Al-Zamily AMJ. Analysis of natural convection and entropy generation in a cavity filled with multi-layers of porous medium and nanofluid with a heat generation. Int J Heat Mass Transf. 2017;106:1218–31.

    Article  CAS  Google Scholar 

  36. Sheikholeslami M, Shamlooei M. Convective flow of nanofluid inside a lid driven porous cavity using CVFEM. Physica B. 2017;521:239–50.

    Article  CAS  Google Scholar 

  37. Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.

    Article  CAS  Google Scholar 

  38. Nield DA, Bejan A. Convection in porous media. Berlin: Springer; 2006.

    Google Scholar 

  39. Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    Article  CAS  Google Scholar 

  40. Sun Q, Pop I. Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall. Int J Thermal Sci. 2011;50:2141–53.

    Article  CAS  Google Scholar 

  41. Sheremet MA, Grosan T, Pop I. Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das’ nanofluid model. Transp Porous Media. 2015;106:595–610.

    Article  CAS  Google Scholar 

  42. Esfe MH, Arani AAA, Yan W-M, Aghaei A. Natural convection in T-shaped cavities filled with water-based suspensions of COOH-functionalized multi walled carbon nanotubes. Int J Mech Sci. 2017;121:21–32.

    Article  Google Scholar 

  43. Kahveci K. Buoyancy driven heat transfer of nanofluids in a tilted enclosure. J Heat Transf. 2010;132:62501.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rasul Mohebbi or Mohsen Izadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, R., Mehryan, S.A.M., Izadi, M. et al. Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants. J Therm Anal Calorim 137, 1719–1733 (2019). https://doi.org/10.1007/s10973-019-08019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08019-9

Keywords

Navigation