Skip to main content
Log in

Free Convection in a Square Cavity Filled with a Porous Medium Saturated by Nanofluid Using Tiwari and Das’ Nanofluid Model

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Free convection in a square differentially heated porous cavity filled with a nanofluid is numerically investigated. The mathematical model has been formulated in dimensionless stream function and temperature taking into account the Darcy–Boussinesq approximation. The Tiwari and Das’ nanofluid model with new more realistic empirical correlations for the physical properties of the nanofluids has been used for numerical analysis. The governing equations have been solved numerically on the basis of a second-order accurate finite difference method. The developed algorithm has been validated by direct comparisons with previously published papers and the results have been found to be in good agreement. The results have been presented in terms of the streamlines, isotherms, local, and average Nusselt numbers at left vertical wall at a wide range of key parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abu-Nada, E., Oztop, H.F.: Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. Int. J. Heat Fluid Flow 30, 669–678 (2009)

  • Aleshkova, I.A., Sheremet, M.A.: Unsteady conjugate natural convection in a square enclosure filled with a porous medium. Int. J. Heat Mass Transf. 53, 5308–5320 (2010)

    Article  Google Scholar 

  • Bagchi, A., Kulacki, F.A.: Natural Convection in Superposed Fluid-Porous Layers. Springer, New York (2014)

    Book  Google Scholar 

  • Baytas, A.C., Pop, I.: Free convection in oblique enclosures filled with a porous medium. Int. J. Heat Mass Transf. 42, 1047–1057 (1999)

    Article  Google Scholar 

  • Beckermann, C., Viskanta, R., Ramadhyani, S.: A numerical study of non-Darcian natural convection in a vertical enclosure filled with a porous medium. Numer. Heat Transfer 10, 446–469 (1986)

    Article  Google Scholar 

  • Bejan, A.: On the boundary layer regime in a vertical enclosure filled with a porous medium. Lett. Heat Mass Transf. 6, 82–91 (1979)

    Article  Google Scholar 

  • Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581 (1952)

    Article  Google Scholar 

  • Bruggeman, D.A.G.: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Ann. Phys. 24, 636–679 (1935)

    Article  Google Scholar 

  • Celli, M.: Non-homogeneous model for a side heated square cavity filled with a nanofluid. Int. J. Heat Fluid Flow 44, 327–355 (2013)

    Article  Google Scholar 

  • Chamkha, A.J., Ismael, M.A.: Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int. J. Therm. Sci. 67, 135–151 (2013)

    Article  Google Scholar 

  • Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA. ASME, FED 231/MD, vol. 66, pp. 99–105 (1995)

  • Das, S.K., Choi, S.U.S., Yu, W., Pradeep, T.: Nanofluids: Science and Technology. Wiley, New Jersey (2007)

    Book  Google Scholar 

  • Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  • Ghasemi, B., Aminossadati, S.M.: Periodic natural convection in a nanofluid-filled enclosure with oscillating heat flux. Int. J. Therm. Sci. 49, 1–9 (2010)

    Article  Google Scholar 

  • Godson, L., Raja, B., Lal, D.M., Wongwises, S.: Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14, 629–641 (2010)

    Article  Google Scholar 

  • Gross, R., Bear, M.R., Hickox, C.E.: The application of flux-corrected transport (FCT) to high Rayleigh number natural convection in a porous medium. In: Proceedings 7th Int. Heat Transfer Conference, San Francisco (1986)

  • Ingham, D.B., Pop, I. (eds.): Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)

    Google Scholar 

  • Jansen, J.D.: A Systems Description of Flow Through Porous Media. Springer, New York (2013)

    Book  Google Scholar 

  • Jou, R.Y., Tzeng, S.C.: Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. Int. Commun. Heat Mass Transfer 33, 727–736 (2006)

    Article  Google Scholar 

  • Kakaç, S., Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)

    Article  Google Scholar 

  • Keblinski, P., Phillpot, S.R., Choi, S.U.S., Eastman, J.A.: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45, 855–863 (2002)

    Article  Google Scholar 

  • Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Transf. 46, 3639–3653 (2003)

    Article  Google Scholar 

  • Kuznetsov, A.V., Nield, D.A.: The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium. Trans. Porous Media 85, 941–951 (2010)

    Article  Google Scholar 

  • Kuznetsov, A.V., Nield, D.A.: The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 65, 682–685 (2013)

    Article  Google Scholar 

  • Mahian, O., Kianifar, A., Kalogirou, S.A., Pop, I., Wongwises, S.: A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57, 582–594 (2013)

    Article  Google Scholar 

  • Manole, D.M., Lage, J.L.: Numerical benchmark results for natural convection in a porous medium cavity. Heat Mass Transf. Porous Media 105, 44–59 (1992)

    Google Scholar 

  • Maxwell-Garnet, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. Roy. Soc. A 203, 385–420 (1904)

    Article  Google Scholar 

  • Moya, S.L., Ramos, E., Sen, M.: Numerical study of natural convection in a tilted rectangular porous material. Int. J. Heat Mass Transf. 30, 630–645 (1987)

    Article  Google Scholar 

  • Muthtamilselvan, M., Kandaswamy, P., Lee, L.: Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. Commun. Nonlinear Sci. Numer. Simul. 15, 1501–1510 (2010)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media (4th edition). Springer, New York (2013)

    Book  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5792–5795 (2009)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 68, 211–214 (2014)

    Article  Google Scholar 

  • Ögüt, E.B.: Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int. J. Therm. Sci. 48, 2063–2073 (2009)

    Article  Google Scholar 

  • Ögüt, E.B.: Heat transfer of water-based nanofluids with natural convection in an inclined square enclosure. J. Therm. Sci. Technol. 30, 23–33 (2010)

    Google Scholar 

  • Oztop, H.F., Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)

    Article  Google Scholar 

  • Patel, H.E., Das, S.K., Sundararajan, T., Sreekumaran, A., George, B., Pradeep, T.: Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl. Phys. Lett. 83, 2931–2933 (2003)

    Article  Google Scholar 

  • Pop, I., Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media. Pergamon, Oxford (2001)

    Google Scholar 

  • Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)

    Article  Google Scholar 

  • Santra, A.K., Sen, S., Chakraborty, N.: Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid. Int. J. Therm. Sci. 47, 1113–1122 (2008)

    Article  Google Scholar 

  • Sheremet, M.A., Trifonova, T.A.: Unsteady conjugate natural convection in a vertical cylinder partially filled with a porous medium. Numer. Heat Transfer Part A 64, 994–1015 (2013)

    Article  Google Scholar 

  • Sheremet, M.A., Grosan, T., Pop, I.: Free convection in shallow and slender porous cavities filled by a nanofluid using Buongiorno’s model. J. Heat Transf. 136, 082501 (2014)

    Article  Google Scholar 

  • Sheremet, M.A., Pop, I.: Thermo-Bioconvection in a square porous cavity filled by oxytactic microorganisms. Transp Porous Media 103, 191–205 (2014)

    Article  Google Scholar 

  • Sheremet, M.A., Pop, I.: Conjugate natural convection in a porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf. 79, 137–145 (2014)

    Article  Google Scholar 

  • Sun, Q., Pop, I.: Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall. Int. J. Therm. Sci. 50, 2141–2153 (2011)

    Article  Google Scholar 

  • Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    Article  Google Scholar 

  • Vadasz, P. (ed.): Emerging Topics in Heat and Mass Transfer in Porous Media. Springer, Berlin (2008)

    Google Scholar 

  • Vafai, K. (ed.): Handbook of Porous Media, 2nd edn. Taylor & Francis, New York (2005)

    Google Scholar 

  • Vafai, K.: Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Tokyo (2010)

    Book  Google Scholar 

  • Walker, K.L., Homsy, G.M.: Convection in a porous cavity. J. Fluid Mech. 87, 338–363 (1978)

    Article  Google Scholar 

  • Wen, D., Lin, G., Vafaei, S., Zhang, K.: Review of nanofluids for heat transfer applications. Particuology 7, 141–150 (2011)

    Article  Google Scholar 

  • Wong, K.V., Leon, O.D.: Applications of nanofluids: current and future. Adv. Mech. Eng. Article ID 519659 (2010), 11 pages, doi:10.1155/2010/519659

  • Yu, W., Choi, S.U.S.: The role of interfacial layer in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanopart. Res. 5, 167–171 (2003)

    Article  Google Scholar 

  • Yu, W., France, D.M., Routbort, J.L., Choi, S.U.S.: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 29, 432–460 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work of M.A. Sheremet was conducted as a government task of the Ministry of Education and Science of the Russian Federation, Project Number 13.1919.2014/K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheremet, M.A., Grosan, T. & Pop, I. Free Convection in a Square Cavity Filled with a Porous Medium Saturated by Nanofluid Using Tiwari and Das’ Nanofluid Model. Transp Porous Med 106, 595–610 (2015). https://doi.org/10.1007/s11242-014-0415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0415-3

Keywords

Navigation