Skip to main content
Log in

Preformulation studies to guide the development of raloxifene lipid-based delivery systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study sought to evaluate raloxifene hydrochloride (RLX) solubility and compatibility with lipid excipients (oils, water-soluble and water-insoluble surfactants) with a view of assisting in the proper choice of excipients in the development of lipid-based drug delivery systems. Drug–lipid excipient compatibility was studied using thermal analysis (differential scanning calorimetry and thermogravimetry), and isothermal stress testing (IST) with a validated HPLC method. Drug solubility was determined using equilibrium solubility and pharmacopoeial methods. Among the eleven studied excipients, sunflower oil and soy lecithin presented clear signs of thermal interaction and reduction in the stability of RLX, while mixtures containing emulium® 22 showed a significant reduction in drug content. These three materials were considered incompatible with RLX. The solubility study revealed that RLX has higher solubility in castor oil and in its derivative, polyethoxylated castor oil. Plurol Isostearique® showed the best result among the water-insoluble surfactants. Thermal analysis associated with accelerated IST studies and together with solubility determinations have been shown to be a valuable strategy for the development of lipid-based drug delivery systems containing RLX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burra M, Jukanti R, Janga KY, Sunkavalli S, Velpula A, Ampati S, et al. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles. Adv Powder Technol. 2013;24(1):393–402.

    Article  CAS  Google Scholar 

  2. Elsheikh MA, Elnaggar YS, Gohar EY, Abdallah OY. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal. Int J Nanomed. 2012;7:3787–802.

    CAS  Google Scholar 

  3. Gluck O, Maricic M. Skeletal and nonskeletal effects of raloxifene. Curr Osteoporos Rep. 2003;1(3):123–8.

    Article  Google Scholar 

  4. Kumar PP, Gayatri P, Satish D, Kumar KV, Rao YM. Development and evaluation of raloxifene solid lipid nanoparticles: influence of triglyceride lipids on in vitro release kinetics. Nov Sci Int J Pharm Sci. 2012;1(9–10):698–707.

    Google Scholar 

  5. Tran TH, Ramasamy T, Cho HJ, Kim Y II, Poudel BK, Choi H-G, et al. Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability. J Nanosci Nanotechnol. 2014;14(7):4820–31.

    Article  CAS  Google Scholar 

  6. Ravi PR, Aditya N, Kathuria H, Malekar S, Vats R. Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. Eur J Pharm Biopharm. 2014;87(1):114–24.

    Article  CAS  Google Scholar 

  7. Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, Singh S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed Res Int. 2013;2013:1–9.

    Article  Google Scholar 

  8. Shah NV, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016;7(3):423–34.

    Article  CAS  Google Scholar 

  9. Thakkar H, Nangesh J, Parmar M, Patel D. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system. J Pharm Bioall Sci. 2011;3(3):442–8.

    Article  CAS  Google Scholar 

  10. Chakraborty S, Shukla D, Jain A, Mishra B, Singh S. Assessment of solubilization characteristics of different surfactants for carvedilol phosphate as a function of pH. J Colloid Interface Sci. 2009;335(2):242–9.

    Article  CAS  Google Scholar 

  11. Chakraborty S, Shukla D, Mishra B, Singh S. Lipid—an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009;73(1):1–15.

    Article  CAS  Google Scholar 

  12. Kuentz M. Oral self-emulsifying drug delivery systems, from biopharmaceutical to technical formulation aspects. J Drug Deliv Sci Technol. 2011;21(1):17–26.

    Article  CAS  Google Scholar 

  13. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems—an overview. Acta Pharm Sin B. 2013;3(6):361–72.

    Article  Google Scholar 

  14. Chadha R, Bhandari S. Drug–excipient compatibility screening—role of thermoanalytical and spectroscopic techniques. J Pharm Biomed Anal. 2014;87:82–97.

    Article  CAS  Google Scholar 

  15. Tita B, Fulias A, Bandur G, Marian E, Tita D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56(2):221–7.

    Article  CAS  Google Scholar 

  16. Barboza F, Vecchia DD, Tagliari MP, Silva MAS, Stulzer HK. Differential scanning calorimetry as a screening technique in compatibility studies of acyclovir extended release formulations. Pharmaceut Chem J. 2009;43(6):363–8.

    Article  CAS  Google Scholar 

  17. Borba PAA, Vecchia DD, Riekes MK, Pereira RN, Tagliari MP, Silva MAS, et al. Pharmaceutical approaches involving carvedilol characterization, compatibility with different excipients and kinetic studies. J Therm Anal Calorim. 2014;115(3):2507–15.

    Article  CAS  Google Scholar 

  18. Kumar N, Shishu, Bansal R, Bansal G. Evaluation of compatibility of itraconazole with excipients used to develop vesicular colloidal carriers. J Therm Anal Calorim. 2013;115(3):2415–22.

    Article  Google Scholar 

  19. Lima ÍPDB, Lima NGPB, Barros DMC, Oliveira TS, Mendonça CMS, Barbosa EG, et al. Compatibility study between hydroquinone and the excipients used in semi-solid pharmaceutical forms by thermal and non-thermal techniques. J Therm Anal Calorim. 2015;120(1):719–32.

    Article  Google Scholar 

  20. Silva LAD, Teixeira FV, Serpa RC, Esteves NL, dos Santos RR, Lima EM, et al. Evaluation of carvedilol compatibility with lipid excipients for the development of lipid-based drug delivery systems. J Therm Anal Calorim. 2016;123(3):2337–44.

    Article  CAS  Google Scholar 

  21. Shete H, Patravale V. Long chain lipid based tamoxifen studies, formulation development and physicochemical characterization. Int J Pharm. 2013;454(1):573–83.

    Article  CAS  Google Scholar 

  22. Kumar N, Goindi S, Saini B, Bansal G. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J Therm Anal Calorim. 2013;115(3):2375–83.

    Article  Google Scholar 

  23. Silva LAD, Cintra ER, Alonso ECP, Alves GL, Lima EM, Taveira SF, et al. Selection of excipients for the development of carvedilol loaded lipid-based drug delivery systems. J Therm Anal Calorim. 2017;130(3):1593–1604.

    Article  CAS  Google Scholar 

  24. Hartauer KJ, Arbuthnot GN, Baertschi SW, Johnson RA, Luke WD, Pearson NG, et al. Influence of peroxide impurities in povidone and crospovidone on the stability of raloxifene hydrochloride in tablets: identification and control of an oxidative degradation product. Pharm Dev Technol. 2000;5(3):303–10.

    Article  CAS  Google Scholar 

  25. Kim AR, Lim SJ, Lee BJ. Metabolic inhibition and kinetics of raloxifene by pharmaceutical excipients in human liver microsomes. Int J Pharm. 2009;368(1–2):37–44.

    Article  CAS  Google Scholar 

  26. Yarkala S, Amaravadi S, Rao VU, Vijaykumar V, Navalgund SG, Jagdish B. Role of excipients on n-oxide raloxifene generation from raloxifene–excipients binary mixtures. Chem Pharm Bull. 2009;57(10):1174–7.

    Article  CAS  Google Scholar 

  27. Borhade V, Pathak S, Sharma S, Patravale V. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: preformulation studies, formulation design and physicochemical evaluation. Int J Pharm. 2012;431(1–2):138–48.

    Article  CAS  Google Scholar 

  28. ICH. Guidance for industry: Q2B (R1)—validation of analytical procedures. Geneva: International Conference on Harmonization; 1996.

  29. USP. United States Pharmacopeia and National Formulary. 39th ed. Rockville: United States Pharmacopeia Convention; 2016.

    Google Scholar 

  30. Tran TH, Poudel BK, Marasini N, Chi SC, Choi HG, Yong CS, et al. Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent. Int J Pharm. 2013;443(1–2):50–7.

    Article  CAS  Google Scholar 

  31. Whitehurst RJ. Emulsifiers in food technology. 1st ed. Oxford: Blackwell Publishing; 2004.

    Book  Google Scholar 

  32. Tan CP, Che Man YB. Differential scanning calorimetric analysis of edible oils: comparison of thermal properties and chemical composition. J Am Oil Chem Soc. 2000;77(2):143–55.

    Article  CAS  Google Scholar 

  33. Qi B, Zhang Q, Sui X, Wang Z, Li Y, Jiang L. Differential scanning calorimetry study—assessing the influence of composition of vegetable oils on oxidation. Food Chem. 2016;194:601–7.

    Article  CAS  Google Scholar 

  34. Parker TD, Adams DA, Zhou K, Harris M, Yu L. Fatty acid composition and oxidative stability of cold-pressed edible seed oils. J Food Sci. 2003;68(4):1240–3.

    Article  CAS  Google Scholar 

  35. Setthacheewakul S, Kedjinda W, Maneenuan D, Wiwattanapatapee R. Controlled release of oral tetrahydrocurcumin from a novel self-emulsifying floating drug delivery system (SEFDDS). AAPS Pharm Sci Tech. 2011;12(1):152–64.

    Article  CAS  Google Scholar 

  36. Kuentz M. Lipid-based formulations for oral delivery of lipophilic drugs. Drug Discov Today Technol. 2012;9(2):e97–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. The authors acknowledge the Chemical Industry of Goiás State (IQUEGO) for the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Neves Marreto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, F.V., Alves, G.L., Ferreira, M.H. et al. Preformulation studies to guide the development of raloxifene lipid-based delivery systems. J Therm Anal Calorim 132, 365–371 (2018). https://doi.org/10.1007/s10973-018-6964-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6964-x

Keywords

Navigation