Skip to main content
Log in

Evaluation of compatibility of itraconazole with excipients used to develop vesicular colloidal carriers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Liposomes and niosomes are known to be efficient vehicles for localized and systemic delivery of particularly lipophilic drugs resulting in their improved bioavailability, targeted delivery, and fewer side effects. These systems consist of bilayered membrane structures comprising amphiphilic molecules like phosphatidylcholine (liposomes) and nonionic surfactants (niosomes). Itraconazole (ITZ) is a widely used insoluble antifungal agent, which is known to be poorly absorbed from available marketed dosage forms. For countering the bioavailability related problem of oral ITZ products, vesicular systems like liposomes and niosomes could provide a rational approach. Drug–excipient interaction is being considered as an essential first step in development of any drug delivery system nowadays. Therefore, the present work describes the evaluation of drug–excipient interactions of ITZ with selected excipients used for development of liposomes and niosomes. Analytical techniques like differential scanning calorimetry, Fourier transform infrared spectroscopy, optical microcopy, and X-ray powder diffraction analysis were utilized for assessing the drug–excipient interactions. Isothermal stress testing was also performed to quantitatively measure the percent change in initial drug content from ITZ–excipient blends kept under stress conditions. The excipients included phospholipids (Phospholipon 90G®, Phospholipon 90H®), surfactants (Span 40 and Span 60), vesicular membrane stabilizer (cholesterol), and a solubilizer (3-hydroxypropyl-betacyclodextrin).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Beule K, Van Gestel J. Pharmacology of itraconazole. Drugs. 2001;61(S1):27–37.

    Article  Google Scholar 

  2. Karel DB. Itraconazole: pharmacology, clinical experience and future development. Int J Antimicrob Agents. 1996;6(3):175–81.

    Article  Google Scholar 

  3. Heykants J, Van Peer A, Van de Velde V, Van Rooy P, Meuldermans W, Lavrijsen K, et al. The clinical pharmacokinetics of itraconazole: an overview. Mycoses. 1989;32:67–87. doi:10.1111/j.1439-0507.1989.tb02296.x.

    Article  Google Scholar 

  4. Buchanan CM, Buchanan NL, Edgar KJ, Klein S, Little JL, Ramsey MG, et al. Pharmacokinetics of itraconazole after intravenous and oral dosing of itraconazole-cyclodextrin formulations. J Pharm Sci. 2007;96(11):3100–16. doi:10.1002/jps.20878.

    Article  CAS  Google Scholar 

  5. Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1–2):33–70. doi:10.1016/S0378-5173(98)00169-0.

    Article  CAS  Google Scholar 

  6. Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release. 1994;30(1):1–15. doi:10.1016/0168-3659(94)90039-6.

    Article  CAS  Google Scholar 

  7. Kumar N, Shishu, Saini B, Bansal G. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3237-6.

  8. Abbas D, Kaloustian J, Orneto C, Piccerelle P, Portugal H, Nicolay A. DSC and physico-chemical properties of a substituted pyridoquinoline and its interaction study with excipients. J Therm Anal Calorim. 2008;93(2):353–60. doi:10.1007/s10973-008-9062-7.

    Article  CAS  Google Scholar 

  9. Bruni G, Amici L, Berbenni V, Marini A, Orlandi A. Drug-excipient compatibility studies. Search of interaction indicators. J Therm Anal Calorim. 2002;68(2):561–73. doi:10.1023/a:1016052121973.

    Article  CAS  Google Scholar 

  10. Drebushchak VA, Shakhtshneider TP, Apenina SA, Medvedeva AS, Safronova LP, Boldyrev VV. Thermoanalytical investigation of drug-excipient interaction. J Therm Anal Calorim. 2006;86(2):303–9. doi:10.1007/s10973-005-7440-y.

    Article  CAS  Google Scholar 

  11. Pani N, Nath L, Acharya S, Bhuniya B. Application of DSC, IST, and FTIR study in the compatibility testing of nateglinide with different pharmaceutical excipients. J Therm Anal Calorim. 2012;108(1):219–26. doi:10.1007/s10973-011-1299-x.

    Article  CAS  Google Scholar 

  12. Roumeli E, Tsiapranta A, Pavlidou E, Vourlias G, Kachrimanis K, Bikiaris D, et al. Compatibility study between trandolapril and natural excipients used in solid dosage forms. J Therm Anal Calorim. 2012;111:2109–15. doi:10.1007/s10793-012-2476-2.

    Article  Google Scholar 

  13. Marini A, Berbenni V, Moioli S, Bruni G, Cofrancesco P, Margheritis C, et al. Drug-excipient compatibility studies by physico-chemical techniques; the case of indomethacin. J Therm Anal Calorim. 2003;73(2):529–45. doi:10.1023/a:1025426012578.

    Article  CAS  Google Scholar 

  14. Marini A, Berbenni V, Pegoretti M, Bruni G, Cofrancesco P, Sinistri C, et al. Drug-excipient compatibility studies by physico-chemical techniques; the case of atenolol. J Therm Anal Calorim. 2003;73(2):547–61. doi:10.1023/a:1025478129417.

    Article  CAS  Google Scholar 

  15. Singh AK, Nath LK. Evaluation of compatibility of tablet excipients and novel synthesized polymer with lamivudine. J Therm Anal Calorim. 2012;108:263–7. doi:10.1007/s10973-011-1650-2.

    Article  CAS  Google Scholar 

  16. Six K, Daems T, de Hoon J, Van Hecken A, Depre M, Bouche M-P, et al. Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion. Eur J Pharm Sci. 2005;24(2–3):179–86. doi:10.1016/j.ejps.2004.10.005.

    Article  CAS  Google Scholar 

  17. Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta. 1998;1376:91–145. doi:10.1016/S0304-4157(98)00006-9.

    Article  CAS  Google Scholar 

  18. Talegaonkar S, Khan AY, Khar RK, Ahmad FJ, Khan ZI. Development and characterization of paracetamol complexes with hydroxypropyl-β-cyclodextrin. Iranian J Pharm Res. 2007;6:95–9.

    CAS  Google Scholar 

  19. Kumar N, Shishu, Bansal G, Kumar S, Jana AK. Preparation and cyclodextrin assisted dissolution rate enhancement of itraconazolium dinitrate salt. Drug Dev Ind Pharm. 2013;39:342–51. doi:10.3109/03639045.2012.681382.

    Article  CAS  Google Scholar 

  20. Kumar N, Shishu, Bansal G, Kumar S, Jana AK. Ditosylate salt of itraconazole and dissolution enhancement using cyclodextrins. AAPS PharmSciTech. 2012;. doi:10.1208/s12249-012-9804-5.

    Google Scholar 

  21. Kumar N, Shishu, Kapoor VR. Facile syntheses of novel salts of a triazole antifungal agent with enhanced solubility. J Heterocycl Chem. 2012;. doi:10.1002/jhet.1120.

    Google Scholar 

  22. Silva JPSe, Lobo JMS. Compatibility studies between nebicapone, a novel COMT inhibitor, and excipients using stepwise isothermal high sensitivity DSC method. J Therm Anal Calorim. 2010;102:317–21.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant provided by University Grants Commission (UGC), New Delhi. The authors are grateful to Nosch Labs (India) for providing itraconazole and Natterman phospholipids (Germany) for providing phospholipids (Phospholipon 90G and Phospholipon 90H) as gift samples.

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shishu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, N., Shishu, Bansal, R. et al. Evaluation of compatibility of itraconazole with excipients used to develop vesicular colloidal carriers. J Therm Anal Calorim 115, 2415–2422 (2014). https://doi.org/10.1007/s10973-013-3326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3326-6

Keywords

Navigation