Skip to main content
Log in

Pharmaceutical approaches involving carvedilol characterization, compatibility with different excipients and kinetic studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study was performed to investigate the physical–chemical characteristics of carvedilol (CRV), complemented by compatibility studies with a great variety of pharmaceutical excipients. Thermogravimetry and differential scanning calorimetry, supported by diffuse reflectance infrared fourier transform spectroscopy (DRIFT), X-ray powder diffraction, and scanning electron microscopy (SEM) were selected as the solid-state techniques for the intended analyses. In addition, non-isothermal methods were employed to investigate kinetic data of CRV decomposition process under nitrogen and air atmospheres. CRV is characterized by an endothermic sharp event (T peak = 389.81 K and ΔH fusion of −176.28 J g−1) and a thermal decomposition behavior in two stages, totalizing 98 % of mass loss. The CRV pattern diffraction presents prominent peaks at 2θ: 5.92°, 14.90°, 18.62°, 24.47°, and 26.30°, and the DRIFT spectrum showed the main characteristics bands for CRV chemical functional groups. The SEM photomicrographs demonstrate that CRV is characterized by irregular blocky shaped crystals. Zero order kinetics was determined by Ozawa method in both nitrogen and air atmospheres. The compatibility results showed no evidence of any incompatibility among CRV and all the excipients analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McCarty R. Stress behavior and experimental hypertension. Neurosci Biobehav Rev. 1983;7:493–502.

    Article  CAS  Google Scholar 

  2. Sukor N. Endocrine hypertension—current understanding and comprehensive management review. Eur J Intern Med. 2011;22:433–40.

    Article  CAS  Google Scholar 

  3. Stafylas PC, Sarafidis PA. Carvedilol in hypertension treatment. Vasc Health Risk Manag. 2008;4:23–30.

    Article  CAS  Google Scholar 

  4. Genaro AR. Remington: the science and practice of pharmacy. 20th ed. Baltimore: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  5. Brophy JM, Joseph L, Rouleau JL. Beta-blockers in congestive heart failure. A Bayesian meta-analysis. Ann Intern Med. 2001;134:550–60.

    Article  CAS  Google Scholar 

  6. Goodman LS, Gilman AG, Brunton LL. Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw Hill; 2006.

    Google Scholar 

  7. Sweetman SC. Martindale: The complete drug reference, In: Truven Health Analytics Micromedex®2.0. The Royal Pharmaceutical Society of Great Britain 2013. http://www-micromedexsolutions-com.ez46.periodicos.capes.gov.br/micromedex2/librarian/ND_T/evidencexpert/ND_PR/evidencexpert/CS/C2B866/ND_AppProduct/evidencexpert/DUPLICATIONSHIELDSYNC/210A84/ND_PG/evidencexpert/ND_B/evidencexpert/ND_P/evidencexpert/PFActionId/evidencexpert.IntermediateToDocumentLink?docId=18917-n&contentSetId=30&title=Carvedilol&servicesTitle=Carvedilol&topicId=null. Accessed 28 Nov 2013.

  8. Lakshmi MS, Sriranjani M, Bakrudeen HB, Kannan AS, Mandal AB, Reddy BSR. Carvedilol/montmorillonite: processing, characterization and release studies. Appl Clay Sci. 2010;48:589–93.

    Article  CAS  Google Scholar 

  9. Loftsson T, Vogensen SB, Desbos C, Jansook P. Carvedilol: solubilization and cyclodextrin complexation: a technical note. AAPS PharmSciTech. 2008;9:425–30.

    Article  CAS  Google Scholar 

  10. Oliveira PR, Stulzer HK, Bernardi LS, Borgmann SHM, Cardoso SG, Silva MAS. Sibutramine hydrochloride monohydrate, thermal behavior, decomposition kinetics and compatibility studies. J Therm Anal Calorim. 2010;100:277–82.

    Article  CAS  Google Scholar 

  11. Peres-Filho MJ, Gaeti MPN, de Oliveira SR, Marreto RN, Lima EM. Thermoanalytical investigation of olanzapine compatibility with excipients used in solid oral dosage forms. J Therm Anal Calorim. 2010;104:255–60.

    Article  Google Scholar 

  12. Tita B, Fulias A, Szabadai Z, Rusu G, Bandur G, Tita D. Compatibility study between ibuprofen and excipients in their binary mixtures. J Therm Anal Calorim. 2010;105:517–27.

    Article  Google Scholar 

  13. Bernardi LS, Oliveira PR, Murakami FS, Silva MAS, Borgmann SHM, Cardoso SG. Characterization of venlafaxine with pharmaceutical excipients. J Therm Anal Calorim. 2009;97:729–33.

    Article  CAS  Google Scholar 

  14. Tita D, Fulias A, Tita B. Thermal stability of ketoprofen—active substance and tablets Part 1. Kinetic study of the active substance under non-isothermal conditions. J Therm Anal Calorim. 2011;105:501–8.

    Article  CAS  Google Scholar 

  15. Singh AV, Nath LK. Synthesis, characterization, and compatibility study of acetylated starch with lamivudine. J Therm Anal Calorim. 2012;108:307–13.

    Article  CAS  Google Scholar 

  16. Singh AV, Nath LK. Evaluation of compatibility of tablet excipients and novel synthesized polymer with lamivudine. J Therm Anal Calorim. 2012;108:263–7.

    Article  CAS  Google Scholar 

  17. Stulzer HK, Rodrigues PO, Cardoso TM, Matos JSR, Silva MAS. Compatibility studies between Captopril and pharmaceutical excipients in tablet formulations. J Therm Anal Calorim. 2008;1:323–8.

    Article  Google Scholar 

  18. Barboza F, Vecchia DD, Tagliari MP, Silva MAS, Stulzer HK. Differential scanning calorimetry as a screening technique in compatibility studies of acyclovir extended release formulations. Pharm Chem J. 2009;43:363–8.

    Article  CAS  Google Scholar 

  19. Salvio-Neto H, Matos JR. Compatibility and decomposition kinetics studies of prednicarbate alone and associated with glyceryl stearate. J Therm Anal Calorim. 2011;103:393–9.

    Article  CAS  Google Scholar 

  20. Bertol CD, Cruz AP, Stulzer HK, Murakami FS, Silva MAS. Thermal decomposition and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2010;102:187–92.

    Article  CAS  Google Scholar 

  21. Soares MFLR, Soares-Sobrinho JL, da Silva KER, Alves LDS, Lopes PQ, Correia LP, de Souza FS, Macedo RO, Rolim-Neto PJ. Thermal characterization of antimicrobial drug ornidazole and its compatibility in a solid pharmaceutical product. J Therm Anal Calorim. 2010;104:307–13.

    Article  Google Scholar 

  22. Oliveira PR, Bernardi LS, Murakami FS, Mendes C, Silva MAS. Thermal characterization and compatibility studies of norfloxacin for development of extended release tablets. J Therm Anal Calorim. 2009;97:741–5.

    Article  CAS  Google Scholar 

  23. Pokharkar BV, Mandpe LP, Padamwar MN, Ambike AA, Mahadik KR, Paradkar A. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol. 2006;167:20–5.

    Article  CAS  Google Scholar 

  24. Tita D, Jurca T, Fulias A, Marian E, Tita B. Compatibility study of the acetylsalicylic acid with different solid dosage forms excipients. J Therm Anal Calorim. 2013;112:407–19.

    Article  CAS  Google Scholar 

  25. Shantikumar S, Sreekanth G, Surendra Nath KV, Jafer Valli S, Satheeshkumar N. Compatibility study between sitagliptin and pharmaceutical excipients used in solid dosage forms. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3329-3.

    Google Scholar 

  26. Riekes MK, Barboza FM, Vecchia DD, Bohatch M Jr, Farago PV, Fernandes D, Silva MAS, Stulzer HK. Evaluation of oral carvedilol microparticles prepared by simple emulsion technique using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and polycaprolactone as polymers. Mater Sci Eng C. 2011;31:962–8.

    Article  CAS  Google Scholar 

  27. Ansel HC, Popovich NG, Allen LV. Pharmaceutical dosage forms and drug delivery systems. 6th ed. São Paulo: Premier; 2000.

    Google Scholar 

  28. Mundargi RC, Patil SA, Aminabhavi TM. Evaluation of acrylamide-grafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs. Carbohydr Polym. 2007;69:130–41.

    Article  CAS  Google Scholar 

  29. Rodante F, Vecchio S, Catalani G, Tomassetti M. Compatibility between active components of a commercial drug. II Farmaco. 2002;57:833–43.

    Article  CAS  Google Scholar 

  30. Kohsari I, Pourmortazavi SM, Hajimirsadeghi SS. Non-isothermal kinetic study of the thermal decomposition of diaminoglyoxime and diaminofurazan. J Therm Anal Calorim. 2007;89:543–6.

    Article  CAS  Google Scholar 

  31. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301.

    Article  CAS  Google Scholar 

  32. Torrado S, Torrado S. Characterization of physical state of mannitol after freeze-drying: effect of acetylsalicylic acid as a second crystalline cosolute. Chem Pharm Bull. 2002;50:567–70.

    Article  CAS  Google Scholar 

  33. Rowe RC, Sheskey PJ, Quinn M. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009.

    Google Scholar 

  34. Adela AM, El-Wahabb ZHA, Ibrahima AA, Al-Shemya MT. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties. Carbohydr Polym. 2011;83:676–87.

    Article  Google Scholar 

  35. Uesu NY, Pineda EAG, Hechenleitner AAW. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. Int J Pharm. 2000;206:85–96.

    Article  CAS  Google Scholar 

  36. Irudayaraj J, Yang H. Depth profiling of a heterogeneous food-packaging model using step-scan Fourier transform infrared photoacoustic spectroscopy. J Food Eng. 2002;55:25–33.

    Article  Google Scholar 

  37. Sarı A, Biçer A, Karaipekli A. Synthesis, characterization, thermal properties of a series of stearic acid esters as novel solid–liquid phase change materials. Mater Lett. 2009;63:1213–6.

    Article  Google Scholar 

  38. Lee SJ, Kim K. Diffuse reflectance infrared spectra of stearic acid self-assembled on fine silver particles. Vib Spectrosc. 1998;18:187–201.

    Article  CAS  Google Scholar 

  39. Yang J, Li D, Wang X, Yang X, Lu L. Synthesis and microstructural control of nanocrystalline titania powders via a stearic acid method. Mater Sci Eng A. 2002;328:108–12.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thanks for Cambridge for the information available at Cambridge Structural Database (CSD), Prof. Dr. Adailton João Bortoluzzi of Bioorganic and Crystallographic Laboratory (LABINC)—at Federal University of Santa Catarina. The X-ray measurements were performed at X-ray Diffraction Laboratory (LDRX) at Federal University of Santa Catarina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hellen Karine Stulzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borba, P.A.A., Vecchia, D.D., Riekes, M.K. et al. Pharmaceutical approaches involving carvedilol characterization, compatibility with different excipients and kinetic studies. J Therm Anal Calorim 115, 2507–2515 (2014). https://doi.org/10.1007/s10973-014-3640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3640-7

Keywords

Navigation