Skip to main content
Log in

Compatibility study between hydroquinone and the excipients used in semi-solid pharmaceutical forms by thermal and non-thermal techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal techniques, such as differential scanning calorimetry (DSC), thermogravimetry (TG), derivate of TG curve, differential thermal analysis, and non-thermal techniques such as fourier transform infrared (FTIR) spectroscopy and X-ray diffractometry (XRD) were used to evaluate the possible interactions between hydroquinone (HQ) and excipients commonly used in semi-solid pharmaceutical forms. The DSC curve of HQ showed a sharp endothermic event between 173 and 179 °C indicating melting point. No evidence of interaction was observed between HQ and cetyl alcohol (CA), cetostearyl alcohol (CTA), disodium ethylenediaminetetraacetate , and decyl oleate. However, based on the thermoanalytical trials, a physical interaction was suspected between HQ and dipropylene glycol (DPG), glycerin (GLY), hydroxypropyl methylcellulose (HPMC), imidazolidinyl urea (IMD), methylparaben (MTP), and propylparaben (PPP). The FTIR results show that for DPG, GLY, HPMC, MTP, and PPP, there were no chemical interactions with HQ at room temperature, but the heating promotes interaction between HQ and HPMC. The FTIR spectra of HQ/IMD show the chemical interaction at room temperature, which was also observed with heating. The XRD results of mixtures between HQ and DPG, HPMC, IMD, MTP, and PPP indicate no interaction between these substances at room temperature, but the heating modifies the HQ crystallinity in these mixtures. All of these methods showed incompatibility between HQ and the excipient IMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rendon M, Berneburg M, Arellano I, Picardo M. Treatment of melasma. J Am Acad Dermatol. 2006;54:272–81.

    Article  Google Scholar 

  2. Draelos ZD. Skin lightening preparations and the hydroquinone controversy. Dermatol Ther. 2007;20:308–13.

    Article  Google Scholar 

  3. Tita B, Fulias A, Bandur G, Marian E, Tita D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56:221–7.

    Article  CAS  Google Scholar 

  4. Roumeli E, Tsiapranta A, Pavlidou E, Vourlias G, Kachrimanis K, Bikiaris D, Chrissafis K. Compatibility study between trandolapril and natural excipients used in solid dosage forms. J Therm Anal Calorim. 2013;111:2109–15.

    Article  CAS  Google Scholar 

  5. Tomassetti M, Catalani A, Rossi V, Vecchio S. Thermal analysis study of the interactions between acetaminophen and excipients in solid dosage forms and in some binary mixtures. J Pharm Biomed Anal. 2005;37:949–55.

    Article  CAS  Google Scholar 

  6. Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010;1:3–26.

    CAS  Google Scholar 

  7. Hardy MJ. Drug–excipient compatibility prediction by DSC. Anal Proc. 1982;19:556–7.

    CAS  Google Scholar 

  8. Smith A. Use of thermal analysis in predicting drug–excipient interactions. Anal Proc. 1982;19:559–61.

    Article  CAS  Google Scholar 

  9. Giron D. Applications of thermal analysis in the pharmaceutical industry. J Pharm Biomed Anal. 1986;4:755–70.

    Article  CAS  Google Scholar 

  10. Ke B. Differential thermal analysis of high polymers. II. Effects of diluents on melting behavior of polyethylenes. J Polym Sci. 1961;50:79–86.

    Article  CAS  Google Scholar 

  11. Soares-Sobrinho JL, Soares MFLR, Lopes PQ, Correia LP, Souza FS, Macêdo RO, Rolim-Neto PJ. A preformulation study of a new medicine for Chagas disease treatment: physicochemical characterization, thermal stability, and compatibility of benznidazole. AAPS Pharm Sci Technol. 2010;11(3):1391–6.

    Article  CAS  Google Scholar 

  12. Costa SPM, Silva KER, Medeiros GCR, Rolim LA, Oliveira JF, Lima MCA, Galdino SL, Pitta IR, Neto PJR. Thermal behavior and compatibility analysis of the new chemical entity LPSF/FZ4. Thermoch Acta. 2013;562:29–34.

    Article  CAS  Google Scholar 

  13. Soares MFLR, Soares-Sobrinho JL, da Silva KER, Alves LDS, Lopes PQ, Correia LP, Souza FS, Macêdo RO, Rolim-Neto PJ. Thermal characterization of antimicrobial drug ornidazole and its compatibility in a solid pharmaceutical product. J Therm Anal Calorim. 2011;104:307–13.

    Article  Google Scholar 

  14. Lavor EP, Freire FD, Aragão CFS, Raffin FN, Moura TFAL. Application of thermal analysis to the study of anti-tuberculosis drug compatibility. Part 1. J Therm Anal Calorim. 2012;108:207–12.

    Article  CAS  Google Scholar 

  15. Haines PJ, Reading M, Wilburn FW. Differential thermal analysis and differential scanning calorimetry. In: Brown ME, editor. Handbook of thermal analysis and calorimetry, Chap. 5, Vol. 1. Principles and practice. Amsterdam: Elsevier Science; 1998. p. 279–361.

    Google Scholar 

  16. Moyano MA, Broussalis AM, Segall AI. Thermal analysis of lipoic acid and evaluation of the compatibility with excipientes. J Therm Anal Calorim. 2010;99:631–7.

    Article  CAS  Google Scholar 

  17. Salvio-Neto H, Novák CS, Matos JR. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. J Therm Anal Calorim. 2009;97:367–74.

    Article  CAS  Google Scholar 

  18. Barboza F, Vecchia DD, Tagliari MP, Silva MAS, Stulzer HK. Differential scanning calorimetry as a screening technique in compatibility studies of acyclovir extended release formulations. Pharm Chem J. 2009;43:363–8.

    Article  CAS  Google Scholar 

  19. Agência Nacional de Vigilância Sanitária. Formulário Nacional da Farmacopéia Brasileira. 1 ed. Brasília: Ministério da Saúde; 2005.

  20. U.S. Pharmacopeia—National Formulary, United States Pharmacopeial Convention. USP 36—NF 31; 2013.

  21. Bertol CD, Cruz AP, Stulzer HK, Murakami FS, Silva MAS. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2010;102:187–92.

    Article  CAS  Google Scholar 

  22. Lira AM, Araújo AAS, Basílio IDJ, Santos BLL, Santana DP, Macêdo RO. Compatibility studies of lapachol with pharmaceutical excipients for the development of topical formulations. Thermochim Acta. 2007;457:1–6.

    Article  CAS  Google Scholar 

  23. Sherine B, Nasser AJA, Rajendran S. Inhibitive action of hydroquinone—Zn2+ system in controlling the corrosion of carbon steel in well water. Int J Eng Sci Technol. 2010;2:341–57.

    Google Scholar 

  24. Liltorp K, Larsen TG, Willumsen B, Holm R. Solid state compatibility studies with tablet excipients using non thermal methods. J Pharm Biomed Anal. 2011;55:424–8.

    Article  CAS  Google Scholar 

  25. Wesolowski M, Rojek B, Piotrowska J. Application of chemometrically processed thermogravimetric data for identification of baclofen–excipient interactions. J AOAC Int. 2012;95:691–8.

    Article  CAS  Google Scholar 

  26. Devore JL. Probability and statistics for engineering and the sciences. 4th ed. Belmont: Duxbury Press; 1995.

    Google Scholar 

  27. Hupp AM, Marshall LJ, Campbell DI, Smith RW, McGuffin VL. Chemometric analysis of diesel fuel for forensic and environmental applications. Anal Chim Acta. 2008;606:159–71.

    Article  CAS  Google Scholar 

  28. Fulias A, Ledeti I, Vlase G, Vlase T. Physico-chemical solid-state characterization of pharmaceutical pyrazolones: an unexpected thermal behavior. J Pharm Biomed Anal. 2013;81–82:44–9.

    Article  Google Scholar 

  29. Lima NGPB, Lima IPB, Barros DMC, Oliveira TS, Raffin FN, Moura TFAL, Medeiros ACD, Gomes APB, Aragão CFS. Compatibility studies of trioxsalen with excipients by DSC, DTA, and FTIR. J Therm Anal Calorim. 2014;115:2311–8.

    Article  CAS  Google Scholar 

  30. Chadha R, Bhandari S. Drug–excipient compatibility screening—role of thermoanalytical and spectroscopic techniques. J Pharm Biomed Anal. 2014;87:82–97.

    Article  CAS  Google Scholar 

  31. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009.

    Google Scholar 

  32. Fujita M, Ueda T, Handa T. Generation of formaldehyde by pharmaceutical excipients and its absorption by meglumine. Chem Pharm Bull. 2009;57:1096–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Apoio à Pesquisa do Estado do Rio Grande do Norte (FAPERN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cícero F. S. Aragão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Barros Lima, Í.P., Lima, N.G.P.B., Barros, D.M.C. et al. Compatibility study between hydroquinone and the excipients used in semi-solid pharmaceutical forms by thermal and non-thermal techniques. J Therm Anal Calorim 120, 719–732 (2015). https://doi.org/10.1007/s10973-014-4076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4076-9

Keywords

Navigation