Skip to main content
Log in

Effect of ultrasound on the thermal behavior of the mixtures for the LTA zeolite synthesis based on metakaolin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of ultrasonic treatment on the thermal behavior of the mixtures from metakaolin, sodium hydroxide and alumina designed for LTA zeolites synthesis was studied. X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy and synchronous thermal analysis have been used. It was shown that after evaporation of the suspension, LTA zeolite (24 mass%) is contained in the samples. It was established that the new phase (sodium aluminum silicate) is formed at a calcination temperature of about 600 °C. It was demonstrated that at a calcination temperature over 800 °C, nepheline is synthesized. The reaction of nepheline formation has been described by the topochemical equation of four-dimensional nucleation/nucleus growth according to Avrami/Erofeev. Using the Ozawa–Flynn–Wall analysis for non-isothermal data, the values of the activation energy and the pre-exponential factor have been calculated. It is shown that after the ultrasonic treatment the activation energy of the nepheline synthesis reaction has smaller values than in the sample without pretreatment. These phenomena have been explained by differences between the structural parameters of the particles (dimension of the coherent scattering region, the value of microdeformations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zeolite Breck D. Zeolite molecular sieves. Structure, chemistry and use. New York: Wiley; 1974.

    Google Scholar 

  2. Rabo JA, editor. Zeolite chemistry and catalysis. Washington: American Chemical Society; 1976.

    Google Scholar 

  3. Reed TB, Breck DW. Crystalline zeolites. II. Crystal structure of synthetic zeolite, type A. J Am Chem Soc. 1956;78(23):5972–7.

    Article  CAS  Google Scholar 

  4. http://www.iza-structure.org/databases/. 2016 July 15.

  5. Davis ME. Strategies for zeolite synthesis by design. Stud Surf Sci Catal. 1995;97:35–43.

    Article  CAS  Google Scholar 

  6. Corma A, Davis ME. Issues in the synthesis of crystalline molecular sieves: towards the crystallization of low framework-density structures. Chem Phys Chem. 2004;5(3):304–13.

    Article  CAS  Google Scholar 

  7. Anthony JL, Davis ME. Assembly of zeolites and crystalline molecular sieves. In: Adachi M, Lockwood DJ, editors. Self-organized nanoscale materials. New York: Springer Science; 2006. p. 159–85.

    Chapter  Google Scholar 

  8. Lobo RF, Zones SI, Davis ME. Structure direction in zeolite synthesis. J Inclus Phen Macrocyc Chem. 1995;21(1–4):47–78.

    CAS  Google Scholar 

  9. De Moor P, Beelen TPM, Komanschek BU, Beck LW, Wagner P, Davis ME, Van Santen RA. Imaging the assembly process of the organic-mediated synthesis of a zeolite. Chem Eur J. 1999;5(7):2083–8.

    Article  Google Scholar 

  10. Barrett PA, Boix T, Puche M, Olson DH, Jordan E, Koller H, Camblor MA. ITQ-12: a new microporous silica polymorph potentially useful for light hydrocarbon separations. Chem Commun. 2003;17:2114–5.

    Article  Google Scholar 

  11. Kuznetsova TF, Eremenko SI. Effect of a template in the synthesis of multi-dimensional nanoporous aluminosilicate with the composition 25% Al2O3–75% SiO2. Rus J Phys Chem A. 2015;89(7):1269–74.

    Article  CAS  Google Scholar 

  12. Johnson EBG, Arshad SE. Hydrothermally synthesized zeolites based on kaolinite: a review. Appl Clay Sci. 2014;97–98:215–21.

    Article  Google Scholar 

  13. Chandrasekhar S, Pramada PN. Investigation on the synthesis of zeolite NaX from Kerala Kaolin. J Porous Mater. 1999;6(4):283–97.

    Article  CAS  Google Scholar 

  14. Pavlov ML, Travkina OS, Basimova RA, Pavlova IN, Kutepov BI. Binder-free syntheses of high-performance zeolites A and X from Kaolin. Petrol Chem. 2009;49(1):36–41.

    Article  Google Scholar 

  15. Kamalia M, Vaezifara S, Kolahduzana H, Malekpourc A, Abdi MR. Synthesis of nanozeolite A from natural clinoptilolite and aluminum sulfate; optimization of the method. Powder Technol. 2009;189(1):52–6.

    Article  Google Scholar 

  16. Mezni M, Hamzaoui A, Hamdi N, Srasra E. Synthesis of zeolites from the low-grade Tunisian natural illite by two different methods. Appl Clay Sci. 2011;52(3):209–18.

    Article  CAS  Google Scholar 

  17. Ríos CA, Williams CD, Fullen MA. Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods. Appl Clay Sci. 2009;42(3–4):446–54.

    Article  Google Scholar 

  18. Chakraborty AK. Phase transformation of kaolinite clay. Berlin: Springer-Verlag; 2014.

    Book  Google Scholar 

  19. Siddique R. Metakaolin. Chapter 2. In: Waste materials and by-products in concrete.  Berlin: Springer; 2008. p. 41–92.

  20. Traoré K, Gridi-Bennadji F, Blanchart P. Significance of kinetic theories on the recrystallization of kaolinite. Thermochima Acta. 2006;451:99–104.

    Article  Google Scholar 

  21. Wang H, Li C, Peng Z, Zhang S. Characterization and thermal behavior of kaolin. J Therm Anal Calorim. 2011;105(1):157–60.

    Article  CAS  Google Scholar 

  22. Pekdemir AD, Sarıkaya Y, Önal M. Thermal transformation kinetics of a kaolinitic clay. J Therm Anal Calorim. 2016;123:767–72.

    Article  CAS  Google Scholar 

  23. Prokof’ev VYu, Gordina NE, Zhidkova AB. Investigation of mechanochemical synthesis of zeolite NaA made of metakaolin in the mills with shock-shear type of strain. Rus J Appl Chem. 2012;85(7):1077–82.

    Article  Google Scholar 

  24. Prokof’ev VYu, Gordina NE, Zhidkova AB, Efremov AM. Mechanochemical synthesis of granulated LTA zeolite from metakaolin. J Mater Sci. 2012;47(14):5385–92.

    Article  Google Scholar 

  25. Gordina NE, Prokof’ev VYu, Kul’pina YuN, Petuhova NV, Gazahova SI, Hmylova OE. Effect of ultrasound on the synthesis of low-modulus zeolites from a metakaolin. Ultrason Sonochem. 2016;33:210–9.

    Article  CAS  Google Scholar 

  26. Prokof’ev VYu, Gordina NE, Efremov AM. Synthesis of type A zeolite from mechanoactivated metakaolin mixtures. J Mater Sci. 2013;48(18):6276–85.

    Article  Google Scholar 

  27. Prokof’ev VYu, Gordina NE. Preparation of granulated LTA and SOD zeolites from mechanically activated mixtures of metakaolin and sodium hydroxide. Appl Clay Sci. 2014;101:44–51.

    Article  Google Scholar 

  28. Hu R-Z, Shi Q-Zh. Thermal analysis kinetics. Beijing: Science Press; 2001.

    Google Scholar 

  29. Post E, Blumm J, Hagemann L, Henderson JB. TA for ceramic materials. München: NETZSCH-Gerätebau GmbH; 2001.

    Google Scholar 

  30. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60(2):641–58.

    Article  CAS  Google Scholar 

  31. Tanaka H. Thermal analysis and kinetics of solid state reactions. Thermochim Acta. 1995;267(1):29–44.

    Article  CAS  Google Scholar 

  32. Ozawa T. Thermal analysis— review and prospect. Thermochim Acta. 2000;355(1–2):35–42.

    Article  CAS  Google Scholar 

  33. Budrugeac P, Homentcovschi D, Segal E. Critical considerations on the isoconversional methods. III. On the evaluation of the activation energy from non-isothermal data. J Therm Anal Calorim. 2001;66(2):557–65.

    Article  CAS  Google Scholar 

  34. Baitalow F, Schmidt H-G, Wolf G. Formal kinetic analysis of processes in the solid state. Thermochim Acta. 1999;337(1–2):111–20.

    Article  CAS  Google Scholar 

  35. Zhao M, Qi Zh, Chen F, Yuea X. Kinetics of non-isothermal decomposition of cinnamic acid. Rus J Phys Chem A. 2014;88:1081–4.

    Article  CAS  Google Scholar 

  36. Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1992;203:167–75.

    Article  CAS  Google Scholar 

  37. Karge HG, Geidel E. Vibrational spectroscopy. In: Karge HG, Weitkamp J, editors. Molecular sieves—science and technology, vol 4. Characterization I. Berlin: Springer-Verlag; 2004. p. 1–200.

  38. Ekström T, Chatfield C, Wruss W, Schreiber MM. The use of X-ray diffraction peak-broadening analysis to characterize ground Al2O3 powders. J Mater Sci. 1985;20:1266–74.

    Article  Google Scholar 

  39. Kochetov NA, Kovalev ID. Mechanical activation of Ti-2B system: XRD investigation of structural features. Euras Chem Technol J. 2016;18:149–52.

    Article  Google Scholar 

  40. Brown ME, Dollimore D, Gallway AK. Reactions in solid state. In: Bamford CH, Tipper CF, editors. Comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1980.

    Google Scholar 

  41. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  42. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Sci B Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  43. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  44. Pietsch WB. Agglomerate bonding and strength. In: Fayed NE, Otten L, editors. Handbook of powder science and technology. New York: Van Nostrand; 1984. p. 231–51.

    Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR according to the research project No. 16-03-00163 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Prokof’ev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordina, N.E., Prokof’ev, V.Y., Hmylova, O.E. et al. Effect of ultrasound on the thermal behavior of the mixtures for the LTA zeolite synthesis based on metakaolin. J Therm Anal Calorim 129, 1415–1427 (2017). https://doi.org/10.1007/s10973-017-6357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6357-6

Keywords

Navigation