Skip to main content

Assembly of Zeolites and Crystalline Molecular Sieves

  • Chapter
Self-Organized Nanoscale Materials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Porous inorganic materials such as zeolites and zeolitelike crystalline molecular sieves are of great interest because of their range of commercial applications such as catalysis, adsorption/separation, and ion exchange. The term zeolite refers to the specific class of aluminosilicate molecular sieves, although the term is frequently used more loosely to describe compounds other than aluminosilicates that have frameworks similar to known zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. E. Davis, Zeolites and molecular-sieves: Not just ordinary catalysts, Ind. Eng. Chem. Res. 30(8), 1675–1683 (1991).

    CAS  Google Scholar 

  2. W. Loewenstein, The distribution of aluminum in the tetrahedra of silicates and aluminates., Am. Mineral. 39, 92–96 (1954).

    CAS  Google Scholar 

  3. M. M. Helmkamp and M. E. Davis, Synthesis of porous silicates, Annu. Rev. Mater. Sci. 25, 161–192 (1995).

    Article  CAS  Google Scholar 

  4. M. E. Davis, New vistas in zeolite and molecular-sieve catalysis, Acc. Chem. Res. 26(3), 111–115 (1993).

    CAS  Google Scholar 

  5. I. Petrovic, A. Navrotsky, M. E. Davis, and S. I. Zones, Thermochemical study of the stability of frameworks in high-silica zeolites, Chem. Mater. 5(12), 1805–1813 (1993).

    CAS  Google Scholar 

  6. P. M. Piccione, C. Laberty, S. Y. Yang, M. A. Camblor, A. Navrotsky, and M. E. Davis, Thermochemistry of pure-silica zeolites, J. Phys. Chem. B 104(43), 10,001–10,011 (2000).

    CAS  Google Scholar 

  7. P. M. Piccione, B. F. Woodfield, J. Boerio-Goates, A. Navrotsky, and M. E. Davis, Entropy of pure-silica molecular sieves, J. Phys. Chem. B 105(25), 6025–6030 (2001).

    CAS  Google Scholar 

  8. J. Boerio-Goates, R. Stevens, B. K. Hom, B. F. Woodfield, P. M. Piccione, M. E. Davis, and A. Navrotsky, Heat capacities, third-law entropies and thermodynamic functions of SiO2 molecular sieves from T = 0 K to 400 K, J. Chem. Thermodyn. 34(2), 205–227 (2002).

    CAS  Google Scholar 

  9. Y. T. Hu, A. Navrotsky, C. Y. Chen, and M. E. Davis, Thermochemical study of the relative stability of dense and microporous aluminophosphate frameworks, Chem. Mater. 7(10), 1816–1823 (1995).

    CAS  Google Scholar 

  10. A. Navrotsky, I. Petrovic, Y. T. Hu, C. Y. Chen, and M. E. Davis, Little energetic limitation to microporous and mesoporous materials, Microporous Mater. 4(1), 95–98 (1995).

    CAS  Google Scholar 

  11. E. C. Moloy, L. P. Davila, J. F. Shackelford, and A. Navrotsky, High-silica zeolites: A relationship between energetics and internal surface areas, Microporous Mesoporous Mater. 54(1–2), 1–13 (2002).

    CAS  Google Scholar 

  12. Q. H. Li, A. Navrotsky, F. Rey, and A. Corma, Thermochemistry of (Gex Si1-x)O2 zeolites, Microporous Mesoporous Mater. 64(1–3), 127–133 (2003).

    CAS  Google Scholar 

  13. Q. H. Li, A. Navrotsky, F. Rey, and A. Corma, Thermochemistry of (Gex Si1-x)O2 zeolites (erratum), Microporous Mesoporous Mater. 66(2–3), 365–365 (2003).

    CAS  Google Scholar 

  14. P. M. Piccione, S. Y. Yang, A. Navrotsky, and M. E. Davis, Thermodynamics of puresilica molecular sieve synthesis, J. Phys. Chem. B 106(14), 3629–3638 (2002).

    CAS  Google Scholar 

  15. P. M. Piccione, S. Y. Yang, A. Navrotsky, and M. E. Davis, Thermodynamics of pure-silica molecular sieve synthesis (erratum), J. Phys. Chem. B 106(20), 5312–5312 (2002).

    CAS  Google Scholar 

  16. G. M. Whitesides, E. E. Simanek, J. P. Mathias, C. T. Seto, D. N. Chin, M. Mammen, and D. M. Gordon, Noncovalent synthesis: Using physical-organic chemistry to make aggregates, Acc. Chem. Res. 28(1), 37–44 (1995).

    CAS  Google Scholar 

  17. M. E. Davis, Strategies for zeolite synthesis by design, Studies Surf. Sci. Catal. 97, 35–43 (1995).

    CAS  Google Scholar 

  18. S. L. Burkett and M. E. Davis, Mechanism of structure direction in the synthesis of Si-ZSM-5: An investigation by intermolecular 1H-29Si CP MAS NMR, J. Phys. Chem. 98(17), 4647–4653 (1994).

    CAS  Google Scholar 

  19. A. V. Goretsky, L.W. Beck, S. I. Zones, and M. E. Davis, Influence of the hydrophobic character of structure-directing agents for the synthesis of pure-silica zeolites, Microporous Mesoporous Mater. 28(3), 387–393 (1999).

    CAS  Google Scholar 

  20. R. A. van Santen, J. Keijspar, G. Ooms, and A. G. T. G. Kortbeek, The role of interfacial energy in zeolite synthesis, Studies Surf. Sci. Catal. 28, 169–175 (1986).

    Google Scholar 

  21. T. V. Harris and S. I. Zones, A study of guest/host energetics for the synthesis of cage structures NON and CHA, Studies Surf. Sci. Catal. 84(Zeolites and Related Microporous Materials, Pt. A), 29–36 (1994).

    CAS  Google Scholar 

  22. G. van de Goor, C. C. Freyhardt, and P. Behrens, The cobalticinium cation Co-III(ETA(5)-C5H5)+2 : A metal-organic complex as a novel template for the synthesis of clathrasils, Z. Anorg. Allg. Chem. 621(2), 311–322 (1995).

    Google Scholar 

  23. P. de Moor, T. P. M. Beelen, B. U. Komanschek, L. W. Beck, P. Wagner, M. E. Davis, and R. A. van Santen, Imaging the assembly process of the organic-mediated synthesis of a zeolite, Chem. Eur. J. 5(7), 2083–2088 (1999).

    Google Scholar 

  24. O. Regev, Y. Cohen, E. Kehat, and Y. Talmon, Precursors of the zeolite ZSM-5 imaged by Cryo-Tem and analyzed by SAXS, Zeolites 14(5), 314–319 (1994).

    CAS  Google Scholar 

  25. B. J. Schoeman, A high temperature in situ laser light-scattering study of the initial stage in the crystallization of TPA-silicalite-1, Zeolites 18(2–3), 97–105 (1997).

    CAS  Google Scholar 

  26. T. A. M. Twomey, M. Mackay, H. Kuipers, and R. W. Thompson, In-situ observation of silicalite nucleation and growth: A light-scattering study, Zeolites 14(3), 162–168 (1994).

    Google Scholar 

  27. L. E. Iton, F. Trouw, T. O. Brun, J. E. Epperson, J. W. White, and S. J. Henderson, Smallangle neutron-scattering studies of the template-mediated crystallization of ZSM-5-type zeolite, Langmuir 8(4), 1045–1048 (1992).

    CAS  Google Scholar 

  28. A. Corma and M. E. Davis, Issues in the synthesis of crystalline molecular sieves: Towards the crystallization of low framework-density structures, Chem. Phys. Chem. 5, 304–313 (2004).

    CAS  Google Scholar 

  29. P. P. E. A. de Moor, T. P. M. Beelen, B. U. Komanschek, O. Diat, and R. A. van Santen , In situ investigation of Si-TPA-MFI crystallization using (ultra-) small- and wide-angle X-ray scattering, J. Phys. Chem. B 101(51), 11,077–11,086 (1997).

    Google Scholar 

  30. W. H. Dokter, H. F. Vangarderen, T. P. M. Beelen, R. A. Vansanten, and W. Bras, Homogeneous versus heterogeneous zeolite nucleation, Angew. Chem. Int. Ed. Engl. 34(1), 73–75 (1995).

    CAS  Google Scholar 

  31. S. L. Burkett and M. E. Davis, Mechanism of structure direction in the synthesis of pure-silica zeolites. 1. Synthesis of TPA/Si-ZSM-5, Chem. Mater. 7(5), 920–928 (1995).

    CAS  Google Scholar 

  32. V. Nikolakis, E. Kokkoli, M. Tirrell, M. Tsapatsis, and D. G. Vlachos, Zeolite growth by addition of subcolloidal particles: Modeling and experimental validation, Chem. Mater. 12(3), 845–853 (2000).

    CAS  Google Scholar 

  33. M. Tsapatsis, M. Lovallo, and M. E. Davis, High-resolution electron microscopy study on the growth of zeolite L nanoclusters, Microporous. Mater. 5(6), 381–388 (1996).

    CAS  Google Scholar 

  34. M. Tsapatsis, M. Lovallo, T. Okubo, M. E. Davis, and M. Sadakata, Characterization of zeolite-L nanoclusters, Chem. Mater. 7(9), 1734–1741 (1995).

    CAS  Google Scholar 

  35. L. Khatri, M. Z. Hu, E. A. Payzant, L. F. Allard, Jr., and M. T. Harris, Nucleation and growth mechanism of silicalite-1 nanocrystal during molecularly templated hydrothermal synthesis, Ceram. Trans. 137(Ceramic Nanomaterials and Nanotechnology), 3–21 (2003).

    CAS  Google Scholar 

  36. R. Ravishankar, C. E. A. Kirschhock, P.-P. Knops-Gerrits, E. J. P. Feijen, P. J. Grobet, P. Vanoppen, F. C. De Schryver, G. Miehe, H. Fuess, B. J. Schoeman, P. A. Jacobs, and J. A. Martens, Characterization of nanosized material extracted from clear suspensions for MFI zeolite synthesis, J. Phys. Chem. B. 103(24), 4960–4964 (1999).

    CAS  Google Scholar 

  37. C. E. A. Kirschhock, R. Ravishankar, F. Verspeurt, P. J. Grobet, P. A. Jacobs, and J. A. Martens, Identification of precursor species in the formation of MFI zeolite in the TPAOH–TEOS–H2O system, J. Phys. Chem. B. 103(24), 4965–4971 (1999).

    CAS  Google Scholar 

  38. C. E. A. Kirschhock, R. Ravishankar, L. van Looveren, P. A. Jacobs, and J. A. Martens, Mechanism of transformation of precursors into nanoslabs in the early stages ofMFIand MEL zeolite formation from TPAOH–TEOS–H2O and TBAOH–TEOS–H2O mixtures, J. Phys. Chem. B. 103(24), 4972–4978 (1999).

    CAS  Google Scholar 

  39. C. E. A. Kirschhock, R. Ravishankar, P. A. Jacobs, and J. A. Martens, Aggregation mechanism of nanoslabs with zeolite MFI-type structure, J. Phys. Chem. B. 103(50), 11,021–11,027 (1999).

    CAS  Google Scholar 

  40. C. E. A. Kirschhock, V. Buschmann, S. Kremer, R. Ravishankar, C. J. Y. Houssin, B. L. Mojet, R. A. van Santen, P. J. Grobet, P. A. Jacobs, and J. A. Martens, Zeosil nanoslabs: Building blocks in nPr4N+-mediated synthesis of MFI zeolite, Angew. Chem., Int. Ed. 40(14), 2637–2640 (2001).

    CAS  Google Scholar 

  41. C. T. G. Knight and S. D. Kinrade, Comment on “Identification of precursor species in the formation of MFI zeolite in the TPAOH–TEOS–H2O system, “ J. Phys. Chem. B. 106(12), 3329–3332 (2002).

    CAS  Google Scholar 

  42. D. D. Kragten, J. M. Fedeyko, K. R. Sawant, J. D. Rimer, D. G. Vlachos, R. F. Lobo, and M. Tsapatsis, Structure of the silica phase extracted from silica/(TPA)OH solutions containing nanoparticles, J. Phys. Chem. B 107(37), 10,006–10,016 (2003).

    CAS  Google Scholar 

  43. H. Ramanan, E. Kokkoli, and M. Tsapatsis, On the TEM and AFM evidence of zeosil nanoslabs present during the synthesis of silicalite-1, Angew. Chem. Int. Ed. 43, 4558–4561 (2004).

    CAS  Google Scholar 

  44. C. E. A. Kirschhock, S. P. B. Kremer, P. J. Grobet, P. A. Jacobs, and J. A. Martens, New evidence for precursor species in the formation of MFI zeolite in the tetrapropylammonium hydroxide-tetraethyl orthosilicate-water system, J. Phys. Chem. B 106(19), 4897–4900 (2002).

    CAS  Google Scholar 

  45. S. P. B. Kremer, C. E. A. Kirschhock, A. Aerts, K. Villani, J. A. Martens, O. I. Lebedev, and G. Van Tendeloo, Tiling silicalite-1 nanoslabs into 3D mosaics, Adv. Mater. 15(20), 1705–1707 (2003).

    CAS  Google Scholar 

  46. C. C. Harrison and N. Loton, Novel routes to designer silicas: Studies of the decomposition of (M+)2[Si(C6H4O2)3]*xH2O: Importance of M+ identity of the kinetics of oligomerization and the structural characteristics of the silicas produced, J. Chem. Soc. Faraday Trans. 91(23), 4287–4297 (1995).

    CAS  Google Scholar 

  47. S. D. Kinrade and D. L. Pole, Effect of alkali-metal cations on the chemistry of aqueous silicate solutions, Inorg. Chem. 31(22), 4558–4563 (1992).

    CAS  Google Scholar 

  48. M. Goepper, H. X. Li, and M. E. Davis, A possible role of alkali-metal ions in the synthesis of pure-silica molecular-sieves, J. Chem. Soc. Chem. Commun. 1665–1666 (1992).

    Google Scholar 

  49. M. A. Camblor, M. Yoshikawa, S. I. Zones, and M. E. Davis. Synthesis of VPI-8: The first large pore zincosilicate, in: Synthesis of Porous Materials: Zeolites, Clays, and Nanostructures, edited by M. L. Occelli and H. Kessler, Marcel Dekker, New York, 1997, pp. 243–261.

    Google Scholar 

  50. M. E. Davis and R. F. Lobo, Zeolite and molecular-sieve synthesis, Chem. Mater. 4(4), 756–768 (1992).

    CAS  Google Scholar 

  51. B. M. Lok, T. R. Cannan, and C. A. Messina, The role of organic-molecules in molecular-sieve synthesis, Zeolites 3(4), 282–291 (1983).

    CAS  Google Scholar 

  52. F. Liebau, Structural Chemistry of Silicates; Springer-Verlag, Berlin, 1985.

    Google Scholar 

  53. R. F. Lobo, S. I. Zones, and M. E. Davis, Structure-direction in zeolite synthesis, J. Incl. Phenom. Mol. Recogn. Chem. 21(1–4), 47–78 (1995).

    CAS  Google Scholar 

  54. P. Wagner, Y. Nakagawa, G. S. Lee, M. E. Davis, S. Elomari, R. C. Medrud, and S. I. Zones, Guest/host relationships in the synthesis of the novel cage-based zeolites SSZ-35, SSZ-36, and SSZ-39, J. Am. Chem. Soc. 122(2), 263–273 (2000).

    CAS  Google Scholar 

  55. H. Lee, S. I. Zones, and M. E. Davis, A combustion-free methodology for synthesizing zeolites and zeolite-like materials, Nature 425(6956), 385–388 (2003).

    CAS  Google Scholar 

  56. H. Koller, R. F. Lobo, S. L. Burkett, and M. E. Davis, SiO−…HOSi hydrogenbonds in as- synthesized high-silica zeolites, J. Phys. Chem. 99(33), 12,588–12,596 (1995).

    CAS  Google Scholar 

  57. D. F. Shantz, J. S. auf der Gunne, H. Koller, and R. F. Lobo, Multiple-quantum 1H MAS NMR studies of defect sites in as-made all-silica ZSM-12 zeolite, J. Am. Chem. Soc. 122(28), 6659–6663 (2000).

    CAS  Google Scholar 

  58. E. Flanigen and R. L. Patton, Silica polymorph and process for preparing same, US patent 4, 073, 685, 1978.

    Google Scholar 

  59. J. L. Guth, H. Kessler, and R. Wey, New route to the pentasil-type zeolites using a non alkaline medium in the presence of fluoride ions, Studies Surf. Sci. Catal. 28, 121–128 (1986).

    CAS  Google Scholar 

  60. M. A. Camblor, L. A. Villaescusa, and M. J. Diaz-Cabanas, Synthesis of all-silica and high-silica molecular sieves in fluoride media, Topics Catal. 9(1–2), 59–76 (1999).

    CAS  Google Scholar 

  61. M. O’Keeffe and B. G. Hyde. The role of nonbonded forces in crystals, in: Structure and Bonding in Crystals, edited by M. O’Keeffe and A. Navrotsky, Academic Press, New York, 1981, pp. 227–254.

    Google Scholar 

  62. L. B. McCusker, R. W. Grosse Kunstleve, C. Baerlocher, M. Yoshikawa, and M. E. Davis, Synthesis optimization and structure analysis of the zincosilicate molecular sieve VPI-9, Microporous Mater. 6(5–6), 295–309 (1996).

    CAS  Google Scholar 

  63. M. J. Annen, M. E. Davis, J. B. Higgins, and J. L. Schlenker, VPI-7: The 1st zincosilicate molecular-sieve containing 3-membered T-atom rings, J. Chem. Soc. Chem. Commun. 1175–1176 (1991).

    Google Scholar 

  64. G. V. Gibbs, E. P. Meagher, M. D. Newton, and D. K. Swanson. A comparison of experimental and theoretical bond length and angle variations for minerals, inorganic solids, and molecules, in: Structure and Bonding in Crystals, edited by M. O’Keeffe and A. Navrotsky, Academic Press, New York, 1981, pp.195–225.

    Google Scholar 

  65. G. O. Brunner and W. M. Meier, Framework density distribution of zeolite-type tetrahedral nets, Nature 337(6203), 146–147 (1989).

    CAS  Google Scholar 

  66. J. L. Guth, J. Hazm, J. M. Lamblin, and H. Gies, Synthesis, characterization and crystal structure of the new clathrasil phase octadecasil, Eur. J. Solid State Inorg. Chem. 28(2), 345–361 (1991).

    Google Scholar 

  67. P. A. Barrett, T. Boix, M. Puche, D. H. Olson, E. Jordan, H. Koller, and M. A. Camblor, ITQ-12: A new microporous silica polymorph potentially useful for light hydrocarbon separations, Chem. Commun. 17, 2114–2115 (2003).

    Google Scholar 

  68. L. A. Villaescusa, P. A. Barrett, and M. A. Camblor, ITQ-7: A new pure silica polymorph with a three-dimensional system of large pore channels, Angew. Chem., Int. Ed. 38(13–14), 1997–2000 (1999).

    CAS  Google Scholar 

  69. H. L. Li and O. M. Yaghi, Transformation of germanium dioxide to microporous germanate 4- connected nets, J. Am. Chem. Soc. 120(40), 10,569–10,570 (1998).

    CAS  Google Scholar 

  70. M. O’Keeffe and O. M. Yaghi, Germanate zeolites: Contrasting the behavior of germanate and silicate structures built from cubic T8O20 units (T = Ge or Si), Chem. Eur. J. 5(10), 2796–2801 (1999).

    CAS  Google Scholar 

  71. D. S. Wragg, A. M. Z. Slawin, and R. E. Morris, The synthesis of gallium phosphate frameworks with and without fluoride ions present: Attempts to direct the synthesis of double four-ring containing materials, J. Mater. Chem. 11(7), 1850–1857 (2001).

    CAS  Google Scholar 

  72. P. Reinert, B. Marler, and J. Patarin, Synthesis and characterization of the new microporous fluorogallophosphate Mu-2 with a novel framework topology, Chem. Commun. 1769–1770 (1998).

    Google Scholar 

  73. P. Reinert, B. Marler, and J. Patarin, Structure analysis and general characterization of the fluorogallophosphate Mu-2: A new microporous material built from double-four-ring units hosting F− anions, J. Mater. Sci. 35(12), 2965–2972 (2000).

    CAS  Google Scholar 

  74. M. A. Zwijnenburg, S. T. Bromley, J. C. Jansen, and T. Maschmeyer, Computational insights into the role of Ge in stabilising double-four ring containing zeolites, Microporous Mesoporous Mater. 73(3), 171–174 (2004).

    CAS  Google Scholar 

  75. T. Blasco, A. Corma, M. J. Diaz-Cabanas, F. Rey, J. A. Vidal-Moya, and C. M. Zicovich-Wilson, Preferential location of Ge in the double four-membered ring units of ITQ-7 zeolite, J. Phys. Chem. B 106(10), 2634–2642 (2002).

    CAS  Google Scholar 

  76. C. T. G. Knight, R. J. Kirkpatrick, and E. Oldfield, Silicon-29 2D NMR evidence of 4 novel doubly germanium substituted silicate cages in a tetramethylammonium germanosilicate solution, J. Am. Chem. Soc. 109(6), 1632–1635 (1987).

    CAS  Google Scholar 

  77. A. Corma, M. J. Diaz-Cabanas, and V. Fornes, Synthesis, characterization, and catalytic activity of a large-pore tridirectional zeolite, H-ITQ-7, Angew. Chem., Int. Ed. 39, 2346–2349 (2000).

    CAS  Google Scholar 

  78. A. Corma, M. T. Navarro, F. Rey, J. Rius, and S. Valencia, Pure polymorph C of zeolite beta synthesized by using framework isomorphous substitution as a structure-directing mechanism, Angew. Chem., Int. Ed. 40(12), 2277–2280 (2001).

    CAS  Google Scholar 

  79. A. Corma, M. T. Navarro, F. Rey, and S. Valencia, Synthesis of pure polymorph C of Beta zeolite in a fluoride-free system, Chem. Commun. 1486–1487 (2001).

    Google Scholar 

  80. G. Sastre, J. A. Vidal-Moya, T. Blasco, J. Rius, J. L. Jorda, M. T. Navarro, F. Rey, and A. Corma, Preferential location of Ge atoms in polymorph C of beta zeolite (ITQ-17) and their structure-directing effect: A computational, XRD, and NMR spectroscopic study, Angew. Chem, Int. Ed. 41(24), 4722–4726 (2002).

    CAS  Google Scholar 

  81. R. F. Lobo, M. Pan, I. Chan, H. X. Li, R. C. Medrud, S. I. Zones, P. A. Crozier, and M. E. Davis, SSZ-26 and SSZ-33: 2 molecular-sieves with intersecting 10-ring and 12-ring pores, Science 262(5139), 1543–1546 (1993).

    CAS  Google Scholar 

  82. R. F. Lobo, M. Pan, I. Chan, R. C. Medrud, S. I. Zones, P. A. Crozier, and M. E. Davis, Physicochemical characterization of zeolites SSZ-26 and SSZ-33, J. Phys. Chem. 98(46), 12,040–12,052 (1994).

    CAS  Google Scholar 

  83. R. Castaneda, A. Corma, V. Fornes, F. Rey, and J. Rius, Synthesis of a new zeolite structure ITQ-24, with intersecting 10-and 12-membered ring pores, J. Am. Chem. Soc. 125(26), 7820–7821 (2003).

    CAS  Google Scholar 

  84. A. Corma, M. J. Diaz-Cabanas, and F. Rey, Microporous crystalline material (ITQ- 15), method for the preparation thereof and its use in processes for separating and transforming organic compounds, Patent WO 0230820, 2002.

    Google Scholar 

  85. A. Corma, F. Rey, S. Valencia, J. L. Jorda, and J. Rius, A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity, Nat. Mater. 2, 493–497 (2003).

    CAS  Google Scholar 

  86. A. Corma, M. Diaz-Cabanas, and F. Rey, Synthesis of ITQ-21 in OH− media, Chem. Commun. 1050–1051 (2003).

    Google Scholar 

  87. A. Corma, M. Diaz-Cabanas, J. Martinez-Triguero, F. Rey, and J. Rius, A largecavity zeolite with wide pore windows and potential as an oil refining catalyst, Nature 418(6897), 514–517 (2002).

    CAS  Google Scholar 

  88. M. Yoshikawa, P. Wagner, M. Lovallo, K. Tsuji, T. Takewaki, C. Y. Chen, L. W. Beck, C. Jones, M. Tsapatsis, S. I. Zones, and M. E. Davis, Synthesis, characterization, and structure solution of CIT-5, a new, high-silica, extra-large-pore molecular sieve, J. Phys. Chem. B 102(37), 7139–7147 (1998).

    CAS  Google Scholar 

  89. A. Corma, M. J. Diaz-Cabanas, F. Rey, S. Nicolopoulus, and B. Boulahya, ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications, Chem. Comm. 12, 1356–1357 (2004).

    Article  CAS  Google Scholar 

  90. J. L. Paillaud, B. Harbuzaru, J. Patarin, and N. Bats, Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings, Science 304(5673), 990–992 (2004).

    CAS  Google Scholar 

  91. W. M. Meier, Zeolites and zeolite-like materials, Studies Surf. Sci. Catal. 28, 13–22 (1986).

    Article  CAS  Google Scholar 

  92. S. L. Lawton and W. J. Rohrbaugh, The framework topology of ZSM-18, a novel zeolite containing rings of three (Si, Al)-O species, Science 247(4948), 1319–1322 (1990).

    CAS  Google Scholar 

  93. D. T. Griffen and P. H. Ribbe, Distortions in the tetrahedral oxyanions of crystalline substances, Jahrb. Miner. Abh. 137(1), 54–73 (1979).

    CAS  Google Scholar 

  94. B. Renner and G. Lehmann, Correlation of angular and bond length distortions in TO4 units in crystals, Z. Kristallogr. 175(1–2), 43–59 (1986).

    Article  CAS  Google Scholar 

  95. M. Wenger and T. Armbruster, Crystal chemistry of lithium: Oxygen coordination and bonding, Eur. J. Miner. 3(2), 387–399 (1991).

    CAS  Google Scholar 

  96. X. H. Bu, P. Y. Feng, and G. D. Stucky, Novel germanate zeolite structures with 3-rings, J. Am. Chem. Soc. 120(43), 11, 204–11, 205 (1998).

    CAS  Google Scholar 

  97. T. Cheetham, H. Fjellvag, T. E. Gier, K. O. Kongshaug, K. P. Lillerud, and G. D. Stucky, Very open microporous materials: from concept to reality, Studies Surf. Sci. Catal. 135(Zeolites and Mesoporous Materials at the Dawn of the 21st Century), 788–795 (2001).

    CAS  Google Scholar 

  98. C. Rohig and H. Gies, A new zincosilicate zeolite with nine-ring channels, Angew. Chem. Int. Ed. 34, 63–65 (1995).

    Google Scholar 

  99. M. E. Davis, Evolution of extra large pore materials, Studies Surf. Sci. Catal. 135, 29–36 (2001).

    Article  Google Scholar 

  100. R. M. Hazen, H. Yang, L. W. Finger, and B. A. Fursenko, Crystal chemistry of highpressure BaSi4O9 in the trigonal (P3) barium tetragermanate structure, Am. Miner. 84(5-6), 987–989 (1999).

    CAS  Google Scholar 

  101. L. W. Finger, R. M. Hazan, and B. A. Fursenko, Refinement of the crystal structure of BaSi4O9 in the benitoite form, J. Phys. Chem. Solids 56, 1389–1393 (1995).

    CAS  Google Scholar 

  102. W. Gebert, Crystal structure of the barium aluminosilicate [Ba13Al22Si10O66], Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 135(5–6), 437–452 (1972).

    CAS  Google Scholar 

  103. S. H. Park, P. Daniels, and H. Gies, RUB-23: A new microporous lithosilicate containing spiro-5 building units, Microporous Mesoporous Mater. 37(1–2), 129–143 (2000).

    Google Scholar 

  104. M. E. Davis, Reflections on routes to enantioselective solid catalysts, Topics Catal. 25(1–4), 3–7 (2003).

    CAS  Google Scholar 

  105. J. M. Thomas, Topography and topology in solid-state chemistry, Phil. Trans. R. Soc. Lond. Ser. A:Math. Phys. Eng. Sci. 277(1268), 251 (1974).

    CAS  Google Scholar 

  106. R. D. Gillard, Stinking rich: Platinum polysulfides, Chem. Br. 20(11), 1022–1024 (1984).

    CAS  Google Scholar 

  107. J. K. O’Loane, Optical-activity in small molecules, non-enantiomorphous crystals, and nematic liquid-crystals, Chem. Rev. 80(1), 41–61 (1980).

    CAS  Google Scholar 

  108. A. M. Glazer and K. Stadnicka, On the origin of optical-activity in crystal-structures, J. Appl. Crystallogr. 19, 108–122 (1986).

    CAS  Google Scholar 

  109. P. R. Kavasmaneck and W. A. Bonner, Adsorption of amino-acid derivatives by d-quartz and l-quartz, J. Am. Chem. Soc. 99(1), 44–50 (1977).

    CAS  Google Scholar 

  110. G. M. Schwab and L. Rudolph, Catalytic cleavage of racemates by d- and l-quartz, 20, 363–364 (1932).

    CAS  Google Scholar 

  111. M. M. J. Treacy and J. M. Newsam, 2 new 3-dimensional 12-ring zeolite frameworks of which zeolite beta is a disordered intergrowth, Nature 332(6161), 249–251 (1988).

    CAS  Google Scholar 

  112. J. M. Newsam, M. M. J. Treacy, W. T. Koetsier, and C. B. De Gruyter, Structural characterization of zeolite beta, Proc. R. Soc. London A 420(1859), 375–405 (1988).

    Article  CAS  Google Scholar 

  113. G. Burns and A. M. Glazer, Space Groups for Solid State Scientists; Academic Press, Boston, 1990.

    Google Scholar 

  114. J. Jacques, A. Collet, and S. H. Wilen, Enantiomers, Racemates, and Resolutions, Wiley, New York, 1981.

    Google Scholar 

  115. W. T. A. Harrison, T. E. Gier, G. D. Stucky, R. W. Broach, and R. A. Bedard, NaZnPO4H2O, an open-framework sodium zincophosphate with a new chiral tetrahedral framework topology, Chem. Mater. 8(1), 145–151 (1996).

    CAS  Google Scholar 

  116. M. J. Gray, J. D. Jasper, A. P. Wilkinson, and J. C. Hanson, Synthesis and synchrotron microcrystal structure of an aluminophosphate with chiral layers containing Lambda tris(ethylenediamine)cobalt(III), Chem. Mater. 9(4), 976–980 (1997).

    CAS  Google Scholar 

  117. J. H. Yu, Y. Wang, Z. Shi, and R. R. Xu, Hydrothermal synthesis and characterization of two new zinc phosphates assembled about a chiral metal complex: [COII(en)3]2[Zn6P8O32H8] and [COIII(en)3][Zn8P6O24CI] 2H2O, Chem. Mater. 13(9), 2972–2978 (2001).

    CAS  Google Scholar 

  118. A. M. Healey, M. T. Weller, and A. R. Genge, Synthesis and structure of NaZnSiO3OH, a new chiral zincosilicate framework material, Inorg. Chem. 38(3), 455–458 (1999).

    CAS  Google Scholar 

  119. M. E. Medina, M. Iglesias, N. Snejko, E. Gutierrez-Puebla, and M. A. Monge, Chiral germanium zeotype with interconnected 8-, 11-, and 11-ring channels. Catalytic properties, Chem. Mater. 16(4), 594–599 (2004).

    CAS  Google Scholar 

  120. S. M. Tomlinson, R. A. Jackson, and C. R. A. Catlow, A computational study of zeolite beta, J. Chem. Soc. Chem. Commun. 813 (1990).

    Google Scholar 

  121. D. K. Kondepudi, R. J. Kaufman, and N. Singh, Chiral symmetry-breaking in sodiumchlorate crystallization, Science 250(4983), 975–976 (1990).

    CAS  Google Scholar 

  122. J. M. McBride and R. L. Carter, Spontaneous resolution by stirred crystallization, Angew. Chem. Int. Ed. 30(3), 293–295 (1991).

    Google Scholar 

  123. R. G. Xiong, X. Z. You, B. F. Abrahams, Z. L. Xue, and C. M. Che, Enantioseparation of racemic organic molecules by a zeolite analogue, Angew. Chem. Int. Ed. 40(23), 4422–4425 (2001).

    CAS  Google Scholar 

  124. P. Behrens, G. van de Goor, and C. C. Freyhardt, Structure-determining C-H…O-Si hydrogen bonds in cobaltocenium fluoride nonasil, Angew. Chem. Int. Ed. 34(23–24), 2680–2682 (1996).

    Google Scholar 

  125. I. Bull, L. A. Villaescusa, S. J. Teat, M. A. Camblor, P. A. Wright, P. Lightfoot, and R. E. Morris, Imposition of polarity on a centrosymmetric zeolite host: The effect of fluoride ions on template ordering in zeolite IFR, J. Am. Chem. Soc. 122(29), 7128–7129 (2000).

    CAS  Google Scholar 

  126. M. E. Davis, Ordered porous materials for emerging applications, Nature 417(6891), 813–821 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Anthony, J.L., Davis, M.E. (2006). Assembly of Zeolites and Crystalline Molecular Sieves. In: Adachi, M., Lockwood, D.J. (eds) Self-Organized Nanoscale Materials. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/0-387-27976-8_4

Download citation

Publish with us

Policies and ethics