Skip to main content
Log in

Effect of driving force of crystallization on critical cooling rate for Pd-based metallic glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The advent of bulk metallic glasses (BMG) has opened lot of scope of wide range of applications for this class of amorphous materials. Thermodynamics plays a very important role in glass formation in multicomponent metallic alloys. BMG’s can be synthesized with relatively lower cooling rate with ease now. However, the glass formation in these systems seems to depend on quite a few parameters like enthalpy of melting, reduced glass transition temperature, under cooling. In present paper, we have studied the glass forming ability of Pd-based metallic glasses using theoretically determined Gibbs free energy difference (ΔG), between the supercooled liquid and the corresponding crystalline phase, and the critical cooling rate (R c). Time–temperature-transformation (TTT) diagrams were constructed to calculate R c using Uhlmann and Davies formulation. Different theoretical expressions of ΔG are incorporated in nucleation and growth equations to find R c from TTT diagram. The results obtained theoretically by Dhurandhar et al. expression of ΔG, assuming hyperbolic variation of specific heat difference (ΔC p), were found to be in excellent agreement with experimental data for different Pd-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Singh PK, Dubey KS. Analysis of thermodynamic behaviour of bulk metallic glass forming melts and glass forming ability. J Therm Anal Calorim. 2010;100:347–53.

    Article  CAS  Google Scholar 

  2. Wu J, Pan Y, Huang J, Pi J. Non-isothermal crystallization kinetics and glass forming ability of Cu–Zr–Ti–In bulk metallic glasses. Thermochim Acta. 2013;552:15–22.

    Article  CAS  Google Scholar 

  3. Schawe JEK. The Gibbs free energy difference between a supercooled melt and the crystalline phase of polymers. J Therm Anal Calorim. 2015;120:1417–25.

    Article  CAS  Google Scholar 

  4. Patel AT, Shevde HR, Pratap A. Thermodynamics of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy. J Therm Anal Calorim. 2012;107:167–70.

    Article  CAS  Google Scholar 

  5. Uhlmann DR. A kinetic treatment of glass formation. J Non Cryst Solids. 1972;7:337–48.

    Article  CAS  Google Scholar 

  6. Rodova M, Liska M, Nitsch K, Kozisek Z. Solidification of molten zinc chloride experimental and theoretical studies. J Therm Anal Calorim. 2008;91:181–5.

    Article  CAS  Google Scholar 

  7. Schroers J, Wu Y, Busch R, Johnson WL. Transition from nucleation controlled to growth controlled crystallization in Pd43Ni10Cu27P20 melts. Acta Mater. 2001;49:2773–81.

    Article  CAS  Google Scholar 

  8. Weinberg MC, Uhlmann DR. “Nose method” of calculating critical cooling rates for glass formation. J Am Ceram Soc. 1989;72:2054–8.

    Article  CAS  Google Scholar 

  9. Uhlmann DR, Klein L, Onorato PIK, Hopper RW. The formation of lunar breccias: sintering and crystallization kinetics. In: Proceedings lunar science conference 6th; 1975. p. 693–705.

  10. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279–306.

    Article  CAS  Google Scholar 

  11. Nishiyama N, Inoue A. Direct comparison between critical cooling rate and some quantitative parameters for evaluation of glass-forming ability in Pd–Cu–Ni–P alloys. Mater Trans. 2002;43(8):1913–7.

    Article  CAS  Google Scholar 

  12. Haruyama O, Watanabe T, Yuki K, Horiuchi M, Kato H, Nishiyama N. Thermodynamic approach to glass-forming ability of water-quenched Pd–P-based and Pt60Ni15P25 bulk metallic glasses. Phys Rev B. 2011;83:064201.

    Article  Google Scholar 

  13. Nishiyama N, Inoue A. Flux treated Pd–Cu–Ni–P amorphous alloy having low critical cooling rate. Mater Trans JIM. 1997;38(5):464–72.

    Article  CAS  Google Scholar 

  14. Xu D, Wirth BD, Schroers J, Johnson WL. Calculating glass-forming ability in absence of key kinetic and thermodynamic parameters. Appl Phys Lett. 2010;97:024102.

    Article  Google Scholar 

  15. Kim JH, Park JS, Park ES, Kim WT, Kim DH. Estimation of critical cooling rates for glass formation in bulk metallic glasses through non-isothermal thermal analysis. Met Mater Int. 2005;11(1):1–9.

    Article  CAS  Google Scholar 

  16. Xu K, Wang Y, Li J, Li Q. Critical cooling rate for the glass formation of ferromagnetic Fe80P13C7 alloy. Acta Metall Sin. 2013;26(1):56–62.

    Article  CAS  Google Scholar 

  17. Thompson CV, Spaepen F. On the approximation of the free energy change on crystallization. Acta Metall. 1979;27:1855–9.

    Article  CAS  Google Scholar 

  18. Ge L, Hui X, Chen G, Liu Z. Prediction of the glass-forming ability of Cu–Zr binary alloys. Acta Phys Chim Sin. 2007;23(6):895–9.

    Article  CAS  Google Scholar 

  19. Nishiyama N, Inoue A. Supercooling investigation and critical cooling rate for glass formation in Pd–Cu–Ni–P alloy. Acta Mater. 1999;47(5):1487–95.

    Article  CAS  Google Scholar 

  20. Herlach D. Non-equilibrium solidification of undercooled melts. Mater Sci Eng R. 1994;12:177–272.

    Article  Google Scholar 

  21. Miller WA, Chadwick GA. On the magnitude of the solid/liquid interfacial energy of pure metals and its relation to grain boundary melting. Acta Metall. 1967;15(4):607–14.

    Article  CAS  Google Scholar 

  22. Kittel C. Introduction to solid state physics. New York: Wiley; 2005 71.

    Google Scholar 

  23. Turnbull D. Under what conditions can a glass be formed? Contem Phys. 1969;10(5):473–88.

    Article  CAS  Google Scholar 

  24. Lad KN, Pratap A, Raval KG. Estimation of the free energy change on crystallization of multicomponent glass forming alloys. J Mater Sci Lett. 2002;21:1419–22.

    Article  CAS  Google Scholar 

  25. Lad KN, Raval KG, Pratap A. Estimation of Gibbs free energy difference in bulk metallic glass forming alloys. J Non Cryst Solids. 2004;334–335:259–62.

    Article  Google Scholar 

  26. Dhurandhar H, Rao TLS, Lad KN, Pratap A. Gibbs free energy for the crystallization of metallic glass-forming alloys from an undercooled liquid. Philos Mag Lett. 2008;88(4):239–49.

    Article  CAS  Google Scholar 

  27. Singh HB, Holz A. Stability limit of supercooled liquids. Solid State Commun. 1983;45(11):985–8.

    Article  CAS  Google Scholar 

  28. Guo F, Poon S, Shiflet G. Metallic glass ingots based on yttrium. Appl Phys Lett. 2003;83(13):2575–7.

    Article  CAS  Google Scholar 

  29. Inoue A, Takeuchi A, Zhang T. Ferromagnetic bulk amorphous alloys. Metall Mater Trans A. 1998;29:1779–93.

    Article  Google Scholar 

  30. Inoue A. High strength bulk amorphous alloys with low critical cooling rates. Mater Trans JIM. 1995;36:866–75.

    Article  CAS  Google Scholar 

  31. Xia M, Zhang S, Li J, Ma C. Thermal stability and its prediction of bulk metallic glass systems. Appl Phys Lett. 2006;88:261913.

    Article  Google Scholar 

  32. Jiang Q, Chi BQ, Li JC. A valence electron concentration criterion for glass-formation ability of metallic liquids. Appl Phys Lett. 2003;82:2984.

    Article  CAS  Google Scholar 

  33. Wang D, Huang Y, Shen J. Thermodynamic characteristics of Ti-based glass-forming alloys. J Non Cryst Solids. 2009;355:986–90.

    Article  CAS  Google Scholar 

  34. Weinberg MC, Zelinski BJ, Ulhmann DR. Critical cooling rate calculations for glass formation. J Non Cryst Solids. 1990;123:90–6.

    Article  CAS  Google Scholar 

  35. Xu D, Johnson WL. Crystallization kinetics and glass-forming ability of bulk metallic glasses Pd40Cu30Ni10P20 and Zr41.2Ti13.8Cu12.5Ni10Be22.5 from classical theory. Phys Rev B. 2006;74:024207.

    Article  Google Scholar 

  36. Uhlmann DR. Glass formation. J Non Cryst Solids. 1977;25:42–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Sonal Prajapati) is grateful to Department of Science and Technology (DST), Govt. of India, for providing financial assistance under the DST-INSPIRE fellowship scheme. Supriya Kasyap is grateful to the University Grant Commission (UGC), New Delhi for providing the financial support under Research Fellowship in Science for Meritorious Students (RFSMS) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonal R. Prajapati.

Additional information

The present article is based on the lecture presented at SATAC2014 conference in Dhanbad—India on 15–17 December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, S.R., Kasyap, S. & Pratap, A. Effect of driving force of crystallization on critical cooling rate for Pd-based metallic glasses. J Therm Anal Calorim 127, 2083–2091 (2017). https://doi.org/10.1007/s10973-016-5824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5824-9

Keywords

Navigation