Skip to main content
Log in

The Gibbs free energy difference between a supercooled melt and the crystalline phase of polymers

A new approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature dependence of Gibbs free energy difference between the supercooled liquid and the crystalline phase, ΔG c, plays a fundamental role for the description of crystallization processes especially at high supercooling as occurring with many technical processes. In the literature, many different approximations for ΔG c(T) can be found. A test of these models with polymer data from the ATHAS database shows that none of them can be used as a general model. We present a new model for ΔG c(T) of polymers, which was successfully tested on ten different polymers. The result indicates that our approach might be generally valid for all polymers in the temperature range between the equilibrium melting temperature and the glass transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mathot VBF. Temperature dependence of some thermodynamic functions for amorphous and semi-crystalline polymers. Polymer. 1984;25:579–99.

    Article  CAS  Google Scholar 

  2. Hoffman JD, Weeks JJ. Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene. J Chem Phys. 1962;37:1723–41.

    Article  CAS  Google Scholar 

  3. Mathot VBF, Pijpers MFJ. Heat capacity, enthalpy and crystallinity of polymers from DSC measurements and determination of the DSC peak base line. Thermochim Acta. 1989;151:241–59.

    Article  CAS  Google Scholar 

  4. Hu WB, Frenkel D. Polymer crystallization by anisotropic interactions. Adv Polym Sci. 2005;191:1–35.

    Article  CAS  Google Scholar 

  5. Hu WB, Frenkel D, Mathot VBF. Simulations of shish-kebab crystallite induced by a single prealigned macromolecule. Macromolecules. 2002;35:7172–4.

    Article  CAS  Google Scholar 

  6. Wunderlich B. One hundred years reseache on supercooling and superheating. Thermochim Acta. 2007;461:4–13.

    Article  CAS  Google Scholar 

  7. Hu WB. Polymer physics. Wien: Springer; 2013. p. 212–4.

    Book  Google Scholar 

  8. Hoffman JD, Davis GT, Lauritzen JI. The rate of crystallization of linear polymers with chain folding. In: Hannay NB, editor. Treatise on solid state chemistry, vol 3 crystalline solids. Plenium Press: New-York; 1976. p. 497–614.

    Chapter  Google Scholar 

  9. Wunderlich B, Metha A. Macromolecular nucleation. J Polym Sci Polym Phys Ed. 1974;12:255–63.

    Article  CAS  Google Scholar 

  10. Cheng SZD. Phase transition in polymers. Amsterdam: Elsevier; 2008: p. 31ff, 77 ff.

  11. Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:71–3.

    Article  CAS  Google Scholar 

  12. Takayanagi M, Yamashita T. Grawth rate and structure of spherulite in fractionated poly(ethylene adipate). J Polym Sci. 1956;22:552–5.

    Article  CAS  Google Scholar 

  13. Armitstaed K, Goldbeck-Wood G. Polymer crystallization theories. Adv Polym Sci. 1992;100:219–312.

    Article  Google Scholar 

  14. Turnbull D, Cohen MH. Crystallization kinetics and glass formation. In: Mackenzie JD, editor. Modern aspects of the vitreous state. London: Butterworths; 1960. p. 38–62.

    Google Scholar 

  15. Turbull D, Cormia RL. Kinetics of crystal nucleation in some normal alkane liquids. J Chem Phys. 1961;34:820–31.

    Article  Google Scholar 

  16. Strobl G. From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: a major route followed in polymer crystallization? Eur Phys J E. 2000;3:165–83.

    Article  CAS  Google Scholar 

  17. Suzuki T, Kovacz AJ. Temperature dependence of spherulitic growth rate of isotactic polystyrene. Polym J. 1970;1:82–100.

    Article  CAS  Google Scholar 

  18. Wunderlich B. Thermodynamic description of condensed phases. J Therm Anal Calorim. 2010;102:413–24.

    Article  CAS  Google Scholar 

  19. Blundell DJ, Beckett DR, Willcocks PH. Routine crystallinity measurements of polymers by DSC. Polymer. 1981;22:704–7.

    Article  CAS  Google Scholar 

  20. Richardson MJ. Thermal analysis of polymers using quantitative differential scanning calorimetry. Polym Test. 1984;4:101–15.

    Article  CAS  Google Scholar 

  21. Adamovsky SA, Minakov AA, Schick C. Scanning microcalorimetry at high cooling rates. Thermochim Acta. 2003;403:55–63.

    Article  CAS  Google Scholar 

  22. Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta. 2010;505:1–13.

    Article  CAS  Google Scholar 

  23. Schawe JEK. Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Thermal Anal Calorim. 2014;116:1165–73.

    Article  CAS  Google Scholar 

  24. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhoff E, van Herwaarden S, van Herwaarden F, Leenaers A. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta. 2011;522:36–45.

    Article  CAS  Google Scholar 

  25. Wurm A, Zhuravlev E, Eckstein K, Jehnichen D, Pospiech D, Androsch R, Wunderlich B, Schick C. Crystallization and homogeneous nucleation kinetics of poly(ε-caprolactone) (PCL) with different molar masses. Macromolecules. 2012;45:3816–28.

    Article  CAS  Google Scholar 

  26. Androsch R, Di Lorenzo ML. Crystal nucleation in glassy poly(l-lactic acid). Macromolecules. 2013;46:6048–56.

    Article  CAS  Google Scholar 

  27. Bosq N, Guigo N, Zhuravlev E, Sbirrazzuoli N. Nonisothermal crystallization of polytetrafluoroethylene in a wide range of cooling rates. J Phys Chem B. 2013;117:3407–15.

    Article  CAS  Google Scholar 

  28. Mollova A, Androsch R, Mileva D, Gahleitner M, Funari SS. Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling. Eur Polym J. 2013;49:1057–65.

    Article  CAS  Google Scholar 

  29. Androsch R, Di Lorenzo ML, Schick C, Wunderlich B. Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer. 2010;51:4639–62.

    Article  CAS  Google Scholar 

  30. Schawe JEK. Analysis of non-isothermal crystallization during cooling and reorganization during heating of isotactic polypropylene by fast scanning DSC. Thermochim Acta. 2014. doi:10.1016/j.tca.2014.11.006.

    Google Scholar 

  31. Wunderlich B. The ATHAS database on heat capacities of polymers. Pure Appl Chem. 1995;67:1019–26.

    Article  CAS  Google Scholar 

  32. Pyda M. Heat capacity of polymers. In: Wilhelm E, Letcher T, editors. Heat capacities. Cambridge: The Royal Society of Chemistry; 2010. p. 329–54.

    Chapter  Google Scholar 

  33. http://www.springermaterials.com/docs/athas.html (the data used here are taken from the previous address http://athas.prz.rzeszow.pl/ before May 2013).

  34. Turnbull D. Formation of crystal nuclei in liquid metals. J Appl Phys. 1950;21:1022–8.

    Article  CAS  Google Scholar 

  35. Meissner F. Über den Einfluss der Zerteilung auf die Schmelztemperatur. Z anorg u allg Chem. 1920;110:169–86.

    Article  CAS  Google Scholar 

  36. Tammann G. Aggregatzustände. Leipzig: Leopold Voss; 1922. p. 125.

    Google Scholar 

  37. Hoffman JD. Thermodynamic driving force in nucleation and growth processes. J Chem Phys. 1958;29:1192–3.

    Article  CAS  Google Scholar 

  38. Jones DRH, Chadwick GA. An expression for the free energy of fusion in the homogeneous nucleation of solid from pure metals. Philos Mag. 1971;24:995–8.

    Article  CAS  Google Scholar 

  39. Dhurandhar H, Shanker Rao TL, Lad KN, Pratap A. Gibbs free energy of the crystallization of metallic glass-forming alloys from an undercooled liquid. Philos Mag Lett. 2008;88:239–49.

    Article  CAS  Google Scholar 

  40. Mondal K, Chatterjee UK, Murty BS. Gibbs free energy for the crystallization of glass forming liquids. Appl Phys Lett. 2003;83:671–3.

    Article  CAS  Google Scholar 

  41. Battezzati L, Garrone E. On the approximation of the free energy of undercooled glass-forming metallic melts. Z Metallkde. 1984;75:305–10.

    CAS  Google Scholar 

  42. Dubey KS, Ramachandrarao P, Lele S. On the estimation of the Kauzmann temperature from relaxation data. Polymer. 1987;28:1341–4.

    Article  CAS  Google Scholar 

  43. Singh PK, Dubey KS. Thermodynamic behaviour of bulk metallic glasses. Thermochim Acta. 2012;530:120–7.

    Article  CAS  Google Scholar 

  44. Thompson V, Spaepen F. On the approximation of the free energy change on crystallization. Acta Metall. 1979;27:1855–9.

    Article  CAS  Google Scholar 

  45. Orava J, Greer AL, Gholipour B, Hewak DW, Smith CE. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat Mater. 2012;11:279–83.

    Article  CAS  Google Scholar 

  46. Singh HB, Holz A. Stability of supercooled liquids. Solid State Commun. 1983;45:985–8.

    Article  CAS  Google Scholar 

  47. Lad KN, Raval KG, Pratap A. Estimation of Gibbs free energy difference in bulk metallic glass forming alloys. J Non-Cryst Solids. 2004;334&335:259–62.

    Article  Google Scholar 

  48. Lad KN, Raval KG, Pratap A. Estimation of free energy change on crystallization of multicomponent glass forming alloys. J Mater Sci Lett. 2002;21:1419–22.

    Article  CAS  Google Scholar 

  49. Ji X, Pan Y. Gibbs free energy difference in metallic glass forming liquids. J Non-Cryst Solids. 2007;353:2443–6.

    Article  CAS  Google Scholar 

  50. Sanchez IC, DiMarzio EA. Dilute-solution theory of polymer crystal growth. Some thermodynamic and predictive aspects for polyethylene. Macromolecules. 1971;4:677–87.

    Article  CAS  Google Scholar 

  51. Goldstein P, del Castillo LF, Garcia-Colin LS. Determination of the isoentropic temperature in the glass transition. Macromolecules. 1993;25:655–8.

    Article  Google Scholar 

  52. Hempel E, Beiner M, Renner T, Donth E. Linearity of heat capacity step near the onset of α glass transition in poly(n-alkylmethacrylate)s. Acta Polym. 1996;47:525–9.

    Article  CAS  Google Scholar 

  53. Korus J, Beiner M, Busse K, Kahle S, Unger R, Donth E. Heat capacity spectroscopy at the glass transition in polymers. Thermochim Acta. 1997;304(305):99–110.

  54. Gutzow IS, Schmelzer JWP. Basic properties and the nature of glasses: an overview. In: Schmelzer JWP, Gutzow IS, editors. Glasses and the glass transition. Weinheim: Wiley-VCH; 2011. p. 9–89.

    Chapter  Google Scholar 

  55. Hodge IM. Effect of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam–Gibbs formulation of nonlinearity. Macromolecules. 1987;20:2897–908.

    Article  CAS  Google Scholar 

  56. This assumption was verified by discussion with Prof. Marek Pyda in August 2013.

  57. Wunderlich B. Thermal analysis of polymeric materials. Berlin: Springer; 2005. p. 145–79.

    Google Scholar 

  58. Wunderlich B. Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J Phys Chem. 1960;64:1052–6.

    Article  CAS  Google Scholar 

  59. Becker R. Quantitative Beziehungen zwischen der Glastemperatur von Polymeren und Energiegrößen. Z Phys Chemie Leipzig. 1977;258:953–66.

    Google Scholar 

  60. Becker R. Einflussgrößen der Glasübergangstemperatur von Polymeren. Plaste Kautsch. 1978;25:1–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen E. K. Schawe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schawe, J.E.K. The Gibbs free energy difference between a supercooled melt and the crystalline phase of polymers. J Therm Anal Calorim 120, 1417–1425 (2015). https://doi.org/10.1007/s10973-015-4453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4453-z

Keywords

Navigation