Skip to main content
Log in

Analysis of thermodynamic behaviour of bulk metallic glass forming melts and glass forming ability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermodynamic behaviour of bulk metallic glass (BMG) forming melts have been studied by analyzing the temperature dependence of the Gibbs free energy difference (∆G), entropy difference (∆S) and enthalpy difference (∆H)between the undercooled melt and the corresponding equilibrium solid phases. The study is made by calculating∆G, ∆S and ∆H in the entire temperature range T m (melting temperature) to T g (glass transition temperature) using the expressions obtained on the basis of Taylor’s series expansion. The entire analysis is made for La-based five samples of BMGs; La55Al25Ni20, La55Al25Ni15Cu5, La55Al25Ni10Cu10, La55Al25Ni5Cu15, and La55Al25Ni5Cu10Co5 and a comparative study is also performed between present results and results obtained in the framework of expressions proposed by earlier workers. An attempt has also been made to study the glass forming ability for BMGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Turnbull D. Formation of crystal nuclei in liquid metals. J Appl Phys. 1950;21:1022–8.

    Article  CAS  Google Scholar 

  2. Hoffmann JD. Thermodynamic driving force in nucleation and growth processes. J Chem Phys. 1958;29:1192–3.

    Article  Google Scholar 

  3. Jone DRH, Chadwick GA. An expression for the free energy of fusion in the homogeneous nucleation of solid from pure melts. Phil Mag. 1971;24:995–8.

    Article  Google Scholar 

  4. Thompson CV, Spaepen F. On the approximation of the free energy change on crystallization. Acta Metall. 1979;27:1855–9.

    Article  CAS  Google Scholar 

  5. Singh HB, Holtz A. Stability limit of supercooled liquids. Solid State Comm. 45;1983:985–8.

    Article  CAS  Google Scholar 

  6. Lad KN, Raval KG, Pratap A. Estimation of Gibbs free energy difference in bulk metallic glass forming alloys. J Non-Cryst Solids. 2004;334–335:259–62.

    Article  Google Scholar 

  7. Cai An-H, Chen H, Li X, Wang H, Zhau Y, An W. An expression for the calculation of Gibbs free energy difference of multi-component bulk metallic glasses. J Alloys Comp. 2007;430:232–6.

    Article  CAS  Google Scholar 

  8. Battezzati L, Ganoue E. On the approximation of the free energy of undercooled glass-forming metallic melts. Z Metallk. 1984;75:305–10.

    CAS  Google Scholar 

  9. Dhurandhar H, Shanker Rao TL, Lad KN, Pratap A. Gibbs free energy for the crystallization of metallic glass-forming alloys from an undercooled liquid. Phil Mag Lett. 2008;88:239–49.

    Article  CAS  Google Scholar 

  10. Dubey KS, Ramachandrarao P. On the free energy change accompanying crystallization of undercooled melts. Acta Metall. 1984;32:91–6.

    Article  CAS  Google Scholar 

  11. Lele S, Dubey KS, Ramachandrarao P. On the temperature dependence of free energy of crystallization. Curr Sci. 1985;54:994–5.

    CAS  Google Scholar 

  12. Dubey KS, Ramachandrarao P. Viscous and thermodynamic behaviour of glass-forming organic liquids. Bull Matter Sci. 1992;15:111–20.

    Article  CAS  Google Scholar 

  13. Dubey KS, Ramachandrarao P, Lele S. On the estimation of the Kauzmann temperature from relaxation data. Polymer 1987;28:1341–4.

    Article  CAS  Google Scholar 

  14. Du XH, Haung JC, Liu CT, Lu ZP. New criterion of glass forming ability for bulk metallic glasses. J Appl Phys. 2007;101:086108-1–086108-3.

    Google Scholar 

  15. Lu ZP, Liu CT. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50;2002:3501–12.

    Article  CAS  Google Scholar 

  16. Lu ZP, Fan H, Li Y, Ng SC. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Mater. 2000;42:667–73.

    Article  CAS  Google Scholar 

  17. Lu ZP, Hu X, Li Y. Thermodynamics of La based La-Al-Cu-Ni-Co alloys studied by temperature modulated DSC. Intermetallics 2000;8:477–80.

    Article  CAS  Google Scholar 

  18. Sun YJ, Qu DD, Huang YJ, Liss KD, Wei XS, Xing DW, Shen J. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability. Acta Mater. 2009;57:1290-9.

    Article  CAS  Google Scholar 

  19. Revesz A. Crystallization kinetics and thermal stability of an amorphous Fe77C5B4Al2GaP9Si2 bulk metallic glass. J Therm Anal Calorim. 2008;91:879–84.

    Article  CAS  Google Scholar 

  20. Jiang QK, Wang XD, Nie XP, Zhang GQ, Ma H, Fecht HJ et al. Zr-(Cu,Ag)-Al bulk metallic glasses. Acta Mater. 2008;56:1785–96.

    Article  CAS  Google Scholar 

  21. Mehta N, Kumar A. Comparative analysis of calorimetric studies in Se90M10(M=In, Te, Sb) chalcogenide glasses. J Therm Anal Calorim 2007;87:343–8.

    Article  CAS  Google Scholar 

  22. Gorzkowska I, Jozwiak P, Garbarczyk JE, Wasiucionek M, Julien CM. Studies on glass transition of lithium-iron phosphate glasses. J Therm Anal Calorim. 2008;93:759–62.

    Article  CAS  Google Scholar 

  23. Pratap A, Lilly Shanker Rao T, Lad KN, Heena KN, Dhurandhar D. Isoconversional vs. model fitting methods: a case study of crystallization kinetics of a Fe-based metallic glass. J Therm Anal Calorim. 2007;89:399–405.

    Article  CAS  Google Scholar 

  24. Dubey KS, Ramachandrarao P. Rate of entropy loss with temperature in liquids and its relation to glass forming ability of materials. Int J Rapid Solidif. 1984–1985;11:1–14.

    Google Scholar 

  25. Mishra RK, Dubey KS. Analysis of thermodynamic parameters of glass forming polymeric melts. J Therm Anal Calorim. 2000;62:687–702.

    Article  CAS  Google Scholar 

  26. Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.

    Article  CAS  Google Scholar 

  27. Lu ZP, Li Y, Liu CT. Glass-forming tendency of bulk La–Al–Ni–Cu–(Co) metallic glass-forming liquids. J Appl Phys. 2003;93:286–90.

    Article  CAS  Google Scholar 

  28. Lu ZP, Goh TT, Li Y, Ng SC. Glass formation in la-based La–Al–Ni–Cu–(Co) alloys by Bridgman solidification and their glass forming ability. Acta Mater. 1999;47:2215–24.

    Article  CAS  Google Scholar 

  29. Turnbull D. Under what conditions can a glass be formed? Contempt Phys. 1969;10:473–88.

    Article  CAS  Google Scholar 

  30. Davies HA. The formation of metallic glasses. Phys Chem Glasses. 1976;17:159–73.

    CAS  Google Scholar 

  31. Gibbs JH, Dimarzio EA. Nature of the glass transition and the glassy state. J Chem Phys. 1958;28:373–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Dubey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P.K., Dubey, K.S. Analysis of thermodynamic behaviour of bulk metallic glass forming melts and glass forming ability. J Therm Anal Calorim 100, 347–353 (2010). https://doi.org/10.1007/s10973-009-0011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0011-x

Keywords

Navigation