Skip to main content
Log in

Investigation of sintered iron ore fines as an oxygen carrier in chemical looping combustion

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Sintered iron ore fines were selected as oxygen carriers in chemical looping combustion. The reactivity of the sintered iron ore was investigated in redox cycles using thermogravimetric methods under isothermal or non-isothermal conditions. The used sintered iron ore samples from the redox cycles in isothermal tests, which were chosen to evaluate their structural changes, were characterized using the N2 adsorption–desorption, SEM–EDS, XRD and Raman spectroscopy. Results revealed that multiple redox cycle was an activation process of the selected sintered iron ore to promote its redox kinetics, as well as formations of the new crystalline phase. This was attributed to variations of the sintered iron ore in both their physical and chemical structural changes during redox cycles. The N2 adsorption–desorption analysis indicated an increase of its surface areas of sintered iron ore during redox cycles. The SEM–EDS results revealed the appearance of tiny cracks on the tested ore sample surfaces. Both XRD and Raman results presented appearance of a new crystalline phase, such as the lepidocrocite (γ-FeOOH), which was apparently generated in the reduction reaction of chemical looping cycles. The formation of the new lepidocrocite phase seemed correlated with the decrease of the oxygen transport capacity of the sintered iron ore. The sintered iron ore performed properly in the carbon-laden atmospheres, and there was no carbon deposition on its surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stewart C, Hessami M-A. A study of methods of carbon dioxide capture and sequestration—the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag. 2005;46(3):403–20.

    Article  CAS  Google Scholar 

  2. Yang Z-Z, Zhao Y-N, He L-N. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv. 2011;1(4):545–67.

    Article  CAS  Google Scholar 

  3. Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell AG, et al. Review of recent advances in carbon dioxide separation and capture. RSC Adv. 2013;3(45):22739–73.

    Article  CAS  Google Scholar 

  4. Liu L, Cao Y, Liu Q. Kinetics studies and structure characteristics of coal char under pressurized CO2 gasification conditions. Fuel. 2015;146:103–10.

    Article  CAS  Google Scholar 

  5. Cao Y, Casenas B, Pan W-P. Investigation of chemical looping combustion by solid fuels. 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier. Energy Fuels. 2006;20(5):1845–54.

    Article  CAS  Google Scholar 

  6. Zhang H, Xiao R, Song M, Shen D, Liu J. Hydrogen production from bio-oil by chemical looping reforming. J Therm Anal Calorim. 2014;115(2):1921–7.

    Article  CAS  Google Scholar 

  7. Hossain MM, de Lasa HI. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chem Eng Sci. 2008;63(18):4433–51.

    Article  CAS  Google Scholar 

  8. Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chem Eng Sci. 2001;56(10):3101–13.

    Article  CAS  Google Scholar 

  9. Wang K, Yu Q, Qin Q. The thermodynamic method for selecting oxygen carriers used for chemical looping air separation. J Therm Anal Calorim. 2013;112(2):747–53.

    Article  CAS  Google Scholar 

  10. Wang K, Yu QB, Qin Q, Li JC. Feasibility study for copper/zirconium oxides as oxygen carrier in chemical looping air separation (CLAS). Adv Mater Res. 2013;683:479–83.

    Article  CAS  Google Scholar 

  11. Cao Y, Zhao H-Y, Sit SP, Pan W-P. Lanthanum-promoted copper-based oxygen carriers for chemical looping combustion process. J Therm Anal Calorim. 2014;116(3):1257–66.

    Article  CAS  Google Scholar 

  12. Zhao H, Cao Y, Orndorff W, Pan W. Study on modification of Cu-based oxygen carrier for chemical looping combustion. J Therm Anal Calorim. 2013;113(3):1123–8.

    Article  CAS  Google Scholar 

  13. Wang B, Xiao G, Song X, Zhao H, Zheng C. Chemical looping combustion of high-sulfur coal with NiFe2O4-combined oxygen carrier. J Therm Anal Calorim. 2014;118(3):1593–602.

    Article  CAS  Google Scholar 

  14. Cui Y, Cao Y, Pan WP. Preparation of copper-based oxygen carrier supported by titanium dioxide. J Therm Anal Calorim. 2013;114(3):1089–97.

    Article  CAS  Google Scholar 

  15. Sarshar Z, Kleitz F, Kaliaguine S. Novel oxygen carriers for chemical looping combustion: La1−xCexBO3 (B = Co, Mn) perovskites synthesized by reactive grinding and nanocasting. Energy Environ Sci. 2011;4(10):4258–69.

    Article  CAS  Google Scholar 

  16. Penthor S, Mayer K, Kern S, Kitzler H, Wöss D, Pröll T, et al. Chemical-looping combustion of raw syngas from biomass steam gasification—coupled operation of two dual fluidized bed pilot plants. Fuel. 2014;127:178–85. doi:10.1016/j.fuel.2014.01.062.

    Article  CAS  Google Scholar 

  17. Corbella BM, Palacios JM. Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane. Fuel. 2007;86(1):113–22.

    Article  CAS  Google Scholar 

  18. Huang Z, He F, Zhao K, Feng Y, Zheng A, Chang S, et al. Natural iron ore as an oxygen carrier for biomass chemical looping gasification in a fluidized bed reactor. J Therm Anal Calorim. 2014;116(3):1315–24.

    Article  CAS  Google Scholar 

  19. Abad A, Adánez J, Cuadrat A, García-Labiano F, Gayán P, De Diego LF. Kinetics of redox reactions of ilmenite for chemical-looping combustion. Chem Eng Sci. 2011;66(4):689–702.

    Article  CAS  Google Scholar 

  20. Leion H, Mattisson T, Lyngfelt A. Use of ores and industrial products as oxygen carriers in chemical-looping combustion. Energy Fuels. 2009;23(4):2307–15.

    Article  CAS  Google Scholar 

  21. Liu X-L, Yin X-J, Zhang H. Reaction characteristics of CO and sintering ore used as an oxygen carrier in chemical looping combustion. Energy Fuels. 2014;28(9):6066–76. doi:10.1021/ef5009677.

    Article  CAS  Google Scholar 

  22. Sohn H, Szekely J. A structural model for gas-solid reactions with a moving boundary—III: A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas. Chem Eng Sci. 1972;27(4):763–78.

    Article  CAS  Google Scholar 

  23. Navrotsky A, Mazeina L, Majzlan J. Size-driven structural and thermodynamic complexity in iron oxides. Science. 2008;319(5870):1635–8.

    Article  CAS  Google Scholar 

  24. Cornell RM, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences and uses. London: Wiley; 2006.

    Google Scholar 

  25. Adánez J, Cuadrat A, Abad A, Gayán P, de Diego LF, García-Labiano F. Ilmenite activation during consecutive redox cycles in chemical-looping combustion. Energy Fuels. 2010;24(2):1402–13. doi:10.1021/ef900856d.

    Article  Google Scholar 

  26. Navarro C, Díaz M, Villa-García MA. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions. Environ Sci Technol. 2010;44(14):5383–8.

    Article  CAS  Google Scholar 

  27. Frost R, Kloprogge J, Russell S, Szetu J. Dehydroxylation and structure of alumina gels prepared from trisecbutoxyaluminium. Thermochim Acta. 1999;329(1):47–56.

    Article  CAS  Google Scholar 

  28. Namduri H, Nasrazadani S. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros Sci. 2008;50(9):2493–7.

    Article  CAS  Google Scholar 

  29. Li Y-S, Church JS, Woodhead AL. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J Magn Magn Mater. 2012;324(8):1543–50.

    Article  CAS  Google Scholar 

  30. Chen C-T, Chen Y-C. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2005;77(18):5912–9.

    Article  CAS  Google Scholar 

  31. Pinna N, Grancharov S, Beato P, Bonville P, Antonietti M, Niederberger M. Magnetite nanocrystals: nonaqueous synthesis, characterization, and solubility. Chem Mater. 2005;17(11):3044–9.

    Article  CAS  Google Scholar 

  32. Xi G, Wang C, Wang X. The oriented self-assembly of magnetic Fe3O4 nanoparticles into monodisperse microspheres and their use as substrates in the formation of Fe3O4 nanorods. Eur J Inorg Chem. 2008;2008(3):425–31.

    Article  Google Scholar 

  33. Shebanova ON, Lazor P. Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem. 2003;174(2):424–30.

    Article  CAS  Google Scholar 

  34. Thibeau RJ, Brown CW, Heidersbach RH. Raman spectra of possible corrosion products of iron. Appl Spectrosc. 1978;32(6):532–5.

    Article  CAS  Google Scholar 

  35. De Faria D, Venâncio Silva S, De Oliveira M. Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc. 1997;28(11):873–8.

    Article  Google Scholar 

  36. Shebanova ON, Lazor P. Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J Raman Spectrosc. 2003;34(11):845–52. doi:10.1002/jrs.1056.

    Article  CAS  Google Scholar 

  37. Pimenta HP, Seshadri V. Characterisation of structure of iron ore sinter and its behaviour during reduction at low temperatures. Ironmak Steelmak. 2002;29(3):169–74. doi:10.1179/030192302225002009.

    Article  CAS  Google Scholar 

  38. Cui X, Antonietti M, Yu SH. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small. 2006;2(6):756–9.

    Article  CAS  Google Scholar 

  39. Tay H-L, Li C-Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal: comparison between gasification in O2 and CO2. Fuel Process Technol. 2010;91(8):800–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Overseas Academic Leader Fund of Anhui University (J10117700073), NSF-CHE-MRI under the Award ID of 1338072, NSF-MRI under the Award ID of 1429563 and the National Natural Science Funds of China (51204220). The authors also thank China Scholarship Council for the financial support. The material is based upon the work supported by the National Science Foundation under Cooperative Agreement No. 1355438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Liu, Q., Cao, Y. et al. Investigation of sintered iron ore fines as an oxygen carrier in chemical looping combustion. J Therm Anal Calorim 125, 459–469 (2016). https://doi.org/10.1007/s10973-016-5320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5320-2

Keywords

Navigation