Skip to main content
Log in

Natural iron ore as an oxygen carrier for biomass chemical looping gasification in a fluidized bed reactor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Chemical looping gasification (CLG) of biomass was performed in a thermogravimetric analyzer (TG) reactor together with a fluidized reactor with natural iron ore oxygen carrier under inert atmosphere. TG experiments indicated that iron ore can provide oxygen source for biomass conversion in the form of lattice oxygen. In the fluidized bed experiments, the influences of reduction temperature on CLG of biomass were emphatically investigated in terms of gas distribution and solid characters. The gas yield and carbon conversion increased, but the tar content decreased in the temperature range of 1,013–1,213 K. In this temperature range, the conversion of oxygen carrier increased from 24.11 to 53.59 %. X-ray diffraction analysis shows that more FeO was generated with temperature increasing. Scanning electron microscope analysis indicates that sintering was observed at elevated temperature. An optimum mass ratio of biomass/oxygen carrier (B/O) of 0.67 was obtained with aim of achieving maximum gasification efficiency of 76.93 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barman NS, Ghosh S, De S. Gasification of biomass in a fixed bed downdraft gasifier-A realistic model including tar. Bioresour Technol. 2012;107:505–11.

    Article  CAS  Google Scholar 

  2. Baratieri M, Baggio P, Fiori L, Grigiante A. Biomass as an energy source: thermodynamic constraints on the performance of the conversion process. Bioresour Technol. 2008;99:7063–73.

    Article  CAS  Google Scholar 

  3. Poskrobko S, KrÓl D, Biofuels Part II. Thermogravimetric research of dry decomposition. J Therm Anal Calorim. 2012;109:629–38.

    Article  CAS  Google Scholar 

  4. Nakanishi M, Ogi T, Fukuda Y. Thermogravimetric analysis in steam and oxygen with gas chromatograph mass spectrometry for basic study of biomass gasification. J Therm Anal Calorim. 2010;101:391–6.

    Article  CAS  Google Scholar 

  5. Kumar A, Eskridge K, Jones DD, Hanna MA. Steam-air fluidized bed gasification of distillers grains: effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresour Technol. 2009;100:2062–8.

    Article  CAS  Google Scholar 

  6. Hossain MM, de Lasa HI. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chem Eng Sci. 2008;63:4433–51.

    Article  CAS  Google Scholar 

  7. Zhao HY, Cao Y, Orndorff W, Pan WP. Study on modification of Cu-based oxygen carrier for chemical looping combustion. J Therm Anal Calorim. 2013;113:1123–8.

    Article  CAS  Google Scholar 

  8. Sonoyama N, Nobuta K, Kimura T, Hosokai S, Hayashi J, Tago T, et al. Production of chemicals by cracking pyrolytic tar from Loy Yang coal over iron oxide catalysts in a steam atmosphere. Fuel Process Technol. 2011;92:771–5.

    Article  CAS  Google Scholar 

  9. Huang Z, He F, Zheng A, Zhao K, Chang S, Zhao Z, et al. Synthesis gas production from biomass gasification using steam coupling with natural hematite as oxygen carrier. Energy. 2013;53:244–51.

    Article  CAS  Google Scholar 

  10. Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF. Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci. 2012;38:215–82.

    Article  CAS  Google Scholar 

  11. Cho P, Mattisson T, Lyngfelt A. Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel. 2004;83:1215–25.

    Article  CAS  Google Scholar 

  12. Xiao R, Song QL, Song M, Lu ZJ, Zhang SA, Shen LH. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier. Combust Flame. 2010;157:1140–53.

    Article  CAS  Google Scholar 

  13. Leion H, Mattisson T, Lyngfelt A. Solid fuels in chemical-looping combustion. Int J Greenh Gas Control. 2008;2:180–93.

    Article  CAS  Google Scholar 

  14. Leion H, Jerndal E, Steenari BM, Hermansson S, Israelsson M, Jansson E, et al. Solid fuels in chemical-looping combustion using oxide scale and unprocessed iron ore as oxygen carriers. Fuel. 2009;88:1945–54.

    Article  CAS  Google Scholar 

  15. Keller M, Leion H, Mattisson T, Lyngfelt A. Gasification inhibition in chemical-looping combustion with solid fuels. Combust Flame. 2011;158:393–400.

    Article  CAS  Google Scholar 

  16. Berguerand N, Lyngfelt A. Batch testing of solid fuels with ilmenite in a 10 kW(th) chemical-looping combustor. Fuel. 2010;89:1749–62.

    Article  CAS  Google Scholar 

  17. Linderholm C, Lyngfelt A, Cuadrat A, Jerndal E. Chemical-looping combustion of solid fuels—Operation in a 10 kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite. Fuel. 2012;102:808–22.

    Article  CAS  Google Scholar 

  18. Berguerand N, Lyngfelt A. Design and operation of a 10 kW(th) chemical-looping combustor for solid fuels—testing with South African coal. Fuel. 2008;87:2713–26.

    Article  CAS  Google Scholar 

  19. Cuadrat A, Abad A, Garcia-Labiano F, Gayan P, de Diego LF, Adanez J. Effect of operating conditions in chemical-looping combustion of coal in a 500 W-th unit. Int J Greenh Gas Control. 2012;6:153–63.

    Article  CAS  Google Scholar 

  20. Cuadrat A, Abad A, Garcia-Labiano F, Gayan P, de Diego LF, Adanez J. The use of ilmenite as oxygen-carrier in a 500 W-th chemical-looping coal combustion unit. Int J Greenh Gas Control. 2011;5:1630–42.

    Article  CAS  Google Scholar 

  21. Shen LH, Wu JH, Xiao J, Song QL, Xiao R. Chemical-looping combustion of biomass in a 10 kW(th) reactor with iron oxide as an oxygen carrier. Energy Fuel. 2009;23:2498–505.

    Article  CAS  Google Scholar 

  22. Xiao R, Song QL, Zhang SA, Zheng WG, Yang YC. Pressurized chemical-looping combustion of Chinese bituminous coal: cyclic performance and characterization of iron ore-based oxygen carrier. Energy Fuel. 2010;24:1449–63.

    Article  CAS  Google Scholar 

  23. Zhao HY, Cao Y, Kang ZZ, Wang YB, Pan WP. Thermal characteristics of Cu-based oxygen carriers. J Therm Anal Calorim. 2012;109:1105–9.

    Article  CAS  Google Scholar 

  24. Gao NB, Li AM, Quan C, Qu Y, Mao LY. Characteristics of hydrogen-rich gas production of biomass gasification with porous ceramic reforming. Int J Hydrogen Energy. 2012;37:9610–8.

    Article  CAS  Google Scholar 

  25. Cao Y, Casenas B, Pan WP. Investigation of chemical looping combustion by solid fuels. 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier. Energy Fuel. 2006;20:1845–54.

    Article  CAS  Google Scholar 

  26. Nordgreen T, Nemanova V, Engvall K, Sjostrom K. Iron-based materials as tar depletion catalysts in biomass gasification: dependency on oxygen potential. Fuel. 2012;95:71–8.

    Article  CAS  Google Scholar 

  27. Sarvaramini A, Larachi F. Catalytic oxygenless steam cracking of syngas-containing benzene model tar compound over natural Fe-bearing silicate minerals. Fuel. 2012;97:741–50.

    Article  CAS  Google Scholar 

  28. Kuhn JN, Zhao ZK, Felix LG, Slimane RB, Choi CW, Ozkan US. Olivine catalysts for methane- and tar-steam reforming. Appl Catal B. 2008;81:14–26.

    Article  CAS  Google Scholar 

  29. Fagbemi L, Khezami L, Capart R. Pyrolysis products from different biomasses: application to the thermal cracking of tar. Appl Energy. 2001;69:293–306.

    Article  CAS  Google Scholar 

  30. Sun S, Tian H, Zhao Y, Sun R, Zhou H. Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresour Technol. 2010;101:3678–84.

    Article  CAS  Google Scholar 

  31. Siriwardane R, Tian HJ, Richards G, Simonyi T, Poston J. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energy Fuel. 2009;23:3885–92.

    Article  CAS  Google Scholar 

  32. Cho P, Mattisson T, Lyngfelt A. Defluidization conditions for a fluidized bed of iron oxide-, nickel oxide-, and manganese oxide-containing oxygen carriers for chemical-looping combustion. Ind Eng Chem Res. 2006;45:968–77.

    Article  CAS  Google Scholar 

  33. Mendiara T, Abad A, de Diego LF, Garcia-Labiano F, Gayan P, Adanez J. Use of an Fe-based residue from alumina production as an oxygen carrier in chemical-looping combustion. Energy Fuel. 2012;26:1420–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (51076154). This work was also supported by Science and Technology Project of Guangdong (2010B010900047), “12th Five Years” National Science and Technology Support Program (2011BAD15B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., He, F., Zhao, K. et al. Natural iron ore as an oxygen carrier for biomass chemical looping gasification in a fluidized bed reactor. J Therm Anal Calorim 116, 1315–1324 (2014). https://doi.org/10.1007/s10973-013-3630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3630-1

Keywords

Navigation