Skip to main content
Log in

Pyrolysis mechanism of a β-O-4 type lignin dimer model compound

A joint theoretical and experimental study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To help understand the pyrolysis mechanism of lignin, a non-phenolic lignin dimer model compound with β-O-4 linkage, namely 1-methoxy-2-(4-methoxyphenethoxy)benzene, was prepared. Its pyrolysis mechanism was investigated by density functional theory calculations and confirmed by the analytical pyrolysis–gas chromatography/mass spectrometry experiments. Possible pyrolytic pathways were proposed and analyzed based on three initial pyrolysis mechanisms of the model compound, including the C β –O homolytic mechanism, the C α –C β homolytic mechanism and the C β –O concerted decomposition mechanism. The results indicate that the lignin dimer model compound is thermally stable at low pyrolysis temperature (300 °C), whereas at moderate pyrolysis temperature (500 °C), four major pyrolytic products will be generated via the initial C β –O concerted decomposition and C β –O homolysis, including the 1-methoxy-4-vinylbenzene, 2-hydroxybenzaldehyde, 1-ethyl-4-methoxybenzene and 2-methoxyphenol. Products from the C α –C β homolysis can hardly be formed, due to the high-energy barriers and limitation of the available free hydrogen atoms. Secondary cracking of the primary pyrolytic products will take place to form some light compounds, which will be enhanced with the increase in pyrolysis temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.

    Article  CAS  Google Scholar 

  2. Braga R, Costa T, Freitas JO, Barros JF, Melo DA, Melo MF. Pyrolysis kinetics of elephant grass pretreated biomasses. J Therm Anal Calorim. 2014;117:1341–8.

    Article  CAS  Google Scholar 

  3. Naik SN, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew Sust Energy Rev. 2010;14:578–97.

    Article  CAS  Google Scholar 

  4. Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev. 2006;106:4044–98.

    Article  CAS  Google Scholar 

  5. Huang L, Ding T, Liu R, Cai J. Prediction of concentration profiles and theoretical yields in lignocellulosic biomass pyrolysis. J Therm Anal Calorim. 2015;120:1473–82.

    Article  CAS  Google Scholar 

  6. Bridgwater AV, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Org Geochem. 1999;30:1479–93.

    Article  CAS  Google Scholar 

  7. Kwok QSM, Jones DEG, Nunez GF, Charland JP, Dionne S. Characterization of bio-fuel and bio-fuel ash. J Therm Anal Calorim. 2004;78:173–84.

    Article  CAS  Google Scholar 

  8. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. 2010;110:3552–99.

    Article  CAS  Google Scholar 

  9. Oliveira TJP, Cardoso CR, Ataíde CH. Fast pyrolysis of soybean hulls: analysis of bio-oil produced in a fluidized bed reactor and of vapor obtained in analytical pyrolysis. J Therm Anal Calorim. 2015;120:427–38.

    Article  CAS  Google Scholar 

  10. Dong CQ, Zhang ZF, Lu Q, Yang YP. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energ Convers Manag. 2012;57:49–59.

    Article  CAS  Google Scholar 

  11. Carlson TR, Vispute TP, Huber GW. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. Chemsuschem. 2008;1:397–400.

    Article  CAS  Google Scholar 

  12. Lu Q, Zhang ZB, Yang XC, Dong CQ, Zhu XF. Catalytic fast pyrolysis of biomass impregnated with K3PO4 to produce phenolic compounds: analytical Py–GC/MS study. J Anal Appl Pyrolysis. 2013;104:139–45.

    Article  CAS  Google Scholar 

  13. Bartkowiak M, Zakrzewski R. Thermal degradation of lignins isolated from wood. J Therm Anal Calorim. 2004;77:295–304.

    Article  CAS  Google Scholar 

  14. Iatridis B, Gavalas GR. Pyrolysis of a precipitated kraft lignin. Ind Eng Chem Prod Res Dev. 1979;18:127–30.

    Article  CAS  Google Scholar 

  15. Caballero JA, Font R, Marcilla A, García AN. Flash pyrolysis of klason lignin in a pyroprobe-1000. J Anal Appl Pyrolysis. 1993;27:221–44.

    Article  CAS  Google Scholar 

  16. Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol. 2001;79:277–99.

    Article  CAS  Google Scholar 

  17. Asmadi M, Kawamoto H, Saka S. Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei. J Anal Appl Pyrolysis. 2011;92:88–98.

    Article  CAS  Google Scholar 

  18. Kawamoto H, Horigoshi S, Saka S. Pyrolysis reactions of various lignin model dimers. J Wood Sci. 2007;53:168–74.

    Article  CAS  Google Scholar 

  19. Kawamoto H, Ryoritani M, Saka S. Different pyrolytic cleavage mechanisms of β-ether bond depending on the side-chain structure of lignin dimers. J Anal Appl Pyrolysis. 2008;81:88–94.

    Article  CAS  Google Scholar 

  20. Kawamoto H, Horigoshi S, Saka S. Effects of side-chain hydroxyl groups on pyrolytic beta-ether cleavage of phenolic lignin model dimer. J Wood Sci. 2007;53:268–71.

    Article  CAS  Google Scholar 

  21. Kawamoto H, Nakamura T, Saka S. Pyrolytic cleavage mechanisms of lignin-ether linkages: a study on p-substituted dimers and trimers. Holzforschung. 2008;62:50–6.

    Article  CAS  Google Scholar 

  22. Domburg GE, Sergeeva VN, Zheibe GA. Thermal analysis of some lignin model compounds. J Therm Anal. 1970;2:419–28.

    Article  Google Scholar 

  23. Hu J, Shen D, Xiao R, Wu S, Zhang H. Free-radical analysis on thermochemical transformation of lignin to phenolic compounds. Energy Fuels. 2012;27:285–93.

    Article  CAS  Google Scholar 

  24. Britt PF, Kidder MK, Buchanan AC. Oxygen substituent effects in the pyrolysis of phenethyl phenyl ethers. Energy Fuels. 2007;21:3102–8.

    Article  CAS  Google Scholar 

  25. Kim S, Chmely SC, Nimlos MR, Bomble YJ, Foust TD, Paton RS, Beckham GT. Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J Phys Chem Lett. 2011;2:2846–52.

    Article  CAS  Google Scholar 

  26. Parthasarathi R, Romero RA, Redondo A, Gnanakaran S. Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett. 2011;2:2660–6.

    Article  CAS  Google Scholar 

  27. Liu C, Zhang Y, Huang X. Study of guaiacol pyrolysis mechanism based on density function theory. Fuel Process Technol. 2014;123:159–65.

    Article  CAS  Google Scholar 

  28. Huang JB, Liu C, Ren LR, Tong H, Li WM, Wu D. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry. J Fuel Chem Technol. 2013;41:657–66.

    Article  CAS  Google Scholar 

  29. Beste A, Buchanan AC. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers. J Org Chem. 2009;74:2837–41.

    Article  CAS  Google Scholar 

  30. Beste A, Buchanan AC. Kinetic analysis of the phenyl-shift reaction in beta-O-4 lignin model compounds: a computational study. J Org Chem. 2011;76:2195–203.

    Article  CAS  Google Scholar 

  31. Beste A, Buchanan AC. Computational investigation of the pyrolysis product selectivity for alpha-hydroxy phenethyl phenyl ether and phenethyl phenyl ether: analysis of substituent effects and reactant conformer selection. J Phys Chem A. 2013;117:3235–42.

    Article  CAS  Google Scholar 

  32. Beste A, Buchanan AC, Harrison RJ. Computational prediction of α/β selectivities in the pyrolysis of oxygen-substituted phenethyl phenyl ethers. J Phys Chem A. 2008;112:4982–8.

    Article  CAS  Google Scholar 

  33. Beste A, Buchanan AC. Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers. Energy Fuels. 2010;24:2857–67.

    Article  CAS  Google Scholar 

  34. Britt PF, Buchanan AC, Cooney MJ, Martineau DR. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds. J Org Chem. 2000;65:1376–89.

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision B.01. Wallingford; Gaussian, Inc.; 2010.

  36. Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Acc Chem Res. 2008;41:157–67.

    Article  CAS  Google Scholar 

  37. Gonzalez C, Schlegel HB. An improved algorithm for reaction path following. J Chem Phys. 1989;90:2154–61.

    Article  CAS  Google Scholar 

  38. Li L, Fan H, Hu H. A theoretical study on bond dissociation enthalpies of coal based model compounds. Fuel. 2015;153:70–7.

    Article  CAS  Google Scholar 

  39. Jarvis MW, Daily JW, Carstensen HH, Dean AM, Sharma S, Dayton DC, Robichaud DJ, Nimlos MR. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether. J Phys Chem A. 2011;115:428–38.

    Article  CAS  Google Scholar 

  40. Elder T, Beste A. Density functional theory study of the concerted pyrolysis mechanism for lignin models. Energy Fuels. 2014;28:5229–35.

    Article  CAS  Google Scholar 

  41. Hosoya T, Kawamoto H, Saka S. Secondary reactions of lignin-derived primary tar components. J Anal Appl Pyrolysis. 2008;83:78–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (51276062), National Torch Plan (2013GH561645), 111 Project (B12034), Foundation of State Key Laboratory of Coal Combustion (FSKLCC1413), and Fundamental Research Funds for the Central Universities (2014ZD17) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Lu or Chang-qing Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jj., Jiang, Xy., Ye, Xn. et al. Pyrolysis mechanism of a β-O-4 type lignin dimer model compound. J Therm Anal Calorim 123, 501–510 (2016). https://doi.org/10.1007/s10973-015-4944-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4944-y

Keywords

Navigation