Skip to main content
Log in

Fast pyrolysis of soybean hulls: analysis of bio-oil produced in a fluidized bed reactor and of vapor obtained in analytical pyrolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This research involved an investigation into the composition both of vapors produced in the analytical pyrolysis of soybean hulls and of the bio-oil produced in the fast pyrolysis of soybean hulls in a fluidized bed reactor. The reaction temperatures were 450, 550, 650 and 750 °C for analytical pyrolysis and 550 °C for the fluidized bed reactor. Product compositions were analyzed using a gas chromatograph coupled to a mass spectrometer. The main objectives of this work were to evaluate the chemical potential of the produced bio-oil and to study the extent and the effects of secondary reactions that occur in the fluidized bed pyrolysis apparatus. The bio-oil proved to be a complex mixture; rich in phenols, cyclopentene derivatives and tetradecane. The main compounds identified in the vapor were 1,3-pentadiene, acetic acid and tetradecane. The differences between the composition of bio-oil and vapor are probably due to the occurrence of secondary reactions, the distinct heating rates applied during analytical pyrolysis and in the fast pyrolysis pilot plant, and the vapor condensing process in the pyrolysis pilot unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev. 2006;106:4044–98.

    Article  CAS  Google Scholar 

  2. Bridgwater AV, Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.

    Article  CAS  Google Scholar 

  3. Apaydin-Varol E, Pütün E, Pütün AE. Slow pyrolysis of pistachio shell. Fuel. 2007;86:1892–9.

    Article  CAS  Google Scholar 

  4. Goyal HB, Seal D, Saxena RC. Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev. 2008;12:504–17.

    Article  CAS  Google Scholar 

  5. Azeez AM, Meier D, Odermatt J, Willner T. Fast pyrolysis of African and European lignocellulosic biomasses using Py-GC/MS and fluidized bed reactor. Energy Fuels. 2010;24:2078–85.

    Article  CAS  Google Scholar 

  6. Lu Q, Yang X, Dong C, Zhang Z, Zhang X, Zhu X. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study. J Anal Appl Pyrolysis. 2011;92:430–8.

    Article  CAS  Google Scholar 

  7. Patwardhan PR, Brown RC, Shanks BH. Understanding the fast pyrolysis of lignin. ChemSusChem. 2011;4:1629–36.

    Article  CAS  Google Scholar 

  8. Anca-Couce A, Mehrabian R, Scharler R, Obernberger I. Kinetic scheme of biomass pyrolysis considering secondary charring reactions. Energy Convers Manag. 2014;87:687–96.

    Article  CAS  Google Scholar 

  9. Cardoso CR, Ataíde CH. Analytical pyrolysis of tobacco residue: effect of temperature and inorganic additives. J Anal Appl Pyrolysis. 2013;99:49–57.

    Article  CAS  Google Scholar 

  10. Butler E, Devlin G, Meier D, McDonnell K. Fluidised bed pyrolysis of lignocellulosic biomasses and comparison of bio-oil and micropyrolyser pyrolysate by GC/MS-FID. Pyrolysis. 2012;2013(103):96–101.

    Google Scholar 

  11. Zambom MA, Dos Santos GT, Modesto EC, Alcalde CR, Gonçalves GD, Da Silva DC, et al. Valor nutricional da casca do grão de soja, farelo de soja, milho moído e farelo de trigo para bovinos. Acta Sci Mar. 2001;23:937–43.

    Google Scholar 

  12. Cardoso CR, Oliveira TJP, Santana Junior JA, Ataíde CH. Physical characterization of sweet sorghum bagasse, tobacco residue, soy hull and fiber sorghum bagasse particles: density, particle size and shape distributions. Powder Technol. 2013;245:105–14.

    Article  CAS  Google Scholar 

  13. Oliveira TJP, Cardoso CR, Ataíde CH. Bubbling fluidization of biomass and sand binary mixtures: minimum fluidization velocity and particle segregation. Chem Eng Process Process Intensif. 2013;72:113–21.

    Article  CAS  Google Scholar 

  14. Cardoso CR, Miranda MR, Santos KG, Ataíde CH. Determination of kinetic parameters and analytical pyrolysis of tobacco waste and sorghum bagasse. J Anal Appl Pyrolysis. 2011;92:392–400.

    Article  CAS  Google Scholar 

  15. Qiang L, Wen-zhi L, Dong Z, Xi-feng Z. Analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) of sawdust with Al/SBA-15 catalysts. J Anal Appl Pyrolysis. 2009;84:131–8.

    Article  Google Scholar 

  16. Chiantore O, Riedo C, Scalarone D. Gas chromatography–mass spectrometric analysis of products from on-line pyrolysis/silylation of plant gums used as binding media. Spec Issue Art Cult Herit. 2009;284:35–41.

    CAS  Google Scholar 

  17. Lu Q, Dong C, Zhang X, Tian H, Yang Y, Zhu X. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: analytical Py-GC/MS study. J Anal Appl Pyrolysis. 2011;90:204–12.

    Article  CAS  Google Scholar 

  18. Tonbul Y. Pyrolysis of pistachio shell as a biomass. J Therm Anal Calorim. 2008;91:641–7.

    Article  CAS  Google Scholar 

  19. Yang SI, Wu MS, Wu CY. Application of biomass fast pyrolysis part I: pyrolysis characteristics and products. Energy. 2014;66:162–71.

    Article  CAS  Google Scholar 

  20. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol. 2011;102:6230–8.

    Article  CAS  Google Scholar 

  21. Wang J, Yan Q, Zhao J, Wang Z, Huang J, Gao S, et al. Fast co-pyrolysis of coal and biomass in a fluidized-bed reactor. J Therm Anal Calorim. 2014;118:1663–73.

  22. Magdziarz A, Wilk M. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim. 2013;114:519–29.

    Article  CAS  Google Scholar 

  23. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite☆. 4th UK Meet. Coal Res Appl. 2003;82:1949–60.

    CAS  Google Scholar 

  24. Amutio M, Lopez G, Aguado R, Artetxe M, Bilbao J, Olazar M. Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel. 2012;95:305–11.

    Article  CAS  Google Scholar 

  25. Amutio M, Lopez G, Alvarez J, Moreira R, Duarte G, Nunes J, et al. Pyrolysis kinetics of forestry residues from the Portuguese Central Inland Region. Chem Eng Res Des. 2013;91:2682–90.

    Article  CAS  Google Scholar 

  26. Jae J, Coolman R, Mountziaris TJ, Huber GW. Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal. Chem Eng Sci. 2014;108:33–46.

    Article  CAS  Google Scholar 

  27. Ferrara F, Orsini A, Plaisant A, Pettinau A. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis. Bioresour Technol. 2014;171:433–41.

    Article  CAS  Google Scholar 

  28. Azeez AM, Meier D, Odermatt J. Temperature dependence of fast pyrolysis volatile products from European and African biomasses. J Anal Appl Pyrolysis. 2011;90:81–92.

    Article  CAS  Google Scholar 

  29. Effendi A, Gerhauser H, Bridgwater AV. Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sustain Energy Rev. 2008;12:2092–116.

    Article  CAS  Google Scholar 

  30. McGrath TE, Brown AP, Meruva NK, Chan WG. Phenolic compound formation from the low temperature pyrolysis of tobacco. J Anal Appl Pyrolysis. 2009;84:170–8.

    Article  CAS  Google Scholar 

  31. Bu Q, Lei H, Ren S, Wang L, Zhang Q, Tang J, et al. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresour Technol. 2012;108:274–9.

    Article  CAS  Google Scholar 

  32. Pakdel H, Roy C, Amen-Chen C, Roy C. Phenolic compounds from vacuum pyrolysis of wood wastes. Can J Chem Eng. 1997;75:121–6.

    Article  CAS  Google Scholar 

  33. Guo Z, Wang S, Gu Y, Xu G, Li X, Luo Z. Separation characteristics of biomass pyrolysis oil in molecular distillation. Sep Purif Technol. 2010;76:52–7.

    Article  CAS  Google Scholar 

  34. Sagehashi M, Nomura T, Shishido H, Sakoda A. Separation of phenols and furfural by pervaporation and reverse osmosis membranes from biomass—superheated steam pyrolysis-derived aqueous solution. Bioresour Technol. 2007;98:2018–26.

    Article  CAS  Google Scholar 

  35. Fele Žilnik L, Jazbinšek A. Recovery of renewable phenolic fraction from pyrolysis oil. Sep Purif Technol. 2012;86:157–70.

    Article  Google Scholar 

  36. Kanaujia PK, Sharma YK, Garg MO, Tripathi D, Singh R. Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. J Anal Appl Pyrolysis. 2014;105:55–74.

    Article  CAS  Google Scholar 

  37. Sheng C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy. 2005;28:499–507.

    Article  CAS  Google Scholar 

  38. Pattiya A, Suttibak S. Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. J Anal Appl Pyrolysis. 2012;95:227–35.

    Article  CAS  Google Scholar 

  39. Pilon G, Lavoie J-M. Pyrolysis of switchgrass (Panicum virgatum L.) at low temperatures in N2 and CO2 environments; a study on chemical composition of chars extracts and bio-oils. J Anal Appl Pyrolysis. 2013;101:122–31.

    Article  CAS  Google Scholar 

  40. Isahak WNRW, Hisham MWM, Yarmo MA, Yun Hin T. A review on bio-oil production from biomass by using pyrolysis method. Renew Sustain Energy Rev. 2012;16:5910–23.

    Article  CAS  Google Scholar 

  41. Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel. 2014;128:162–9.

    Article  CAS  Google Scholar 

  42. Gomez C, Velo E, Barontini F, Cozzani V. Influence of secondary reactions on the heat of pyrolysis of biomass. Ind Eng Chem Res. 2009;48:10222–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian institutions CAPES (Federal Agency for the Support and Improvement of Higher Education), CEMIG (Minas Gerais Electric Company), CNPq (National Council for Scientific and Technological Development) and FAPEMIG (Minas Gerais State Research Foundation) for their support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Ataíde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, T.J.P., Cardoso, C.R. & Ataíde, C.H. Fast pyrolysis of soybean hulls: analysis of bio-oil produced in a fluidized bed reactor and of vapor obtained in analytical pyrolysis. J Therm Anal Calorim 120, 427–438 (2015). https://doi.org/10.1007/s10973-015-4600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4600-6

Keywords

Navigation