Skip to main content
Log in

Characterization of TiO2 powders and thin films prepared by non-aqueous sol–gel techniques

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Stable TiO2 sols were prepared using two non-aqueous sol–gel processes with titanium n-butoxide and titanium isopropoxide, respectively. Crystallization and phase transitions of powders and thin films were studied by ex situ and in situ X-ray diffraction. For both methods, TiO2 began to crystallize around 320 °C in air. Using helium instead of air during heat treatment slowed down the crystallization and substoichiometric powders were formed. TiO2 thin films were obtained by spin coating. The morphology of the films was evaluated using scanning electron microscopy. The films were homogeneous and transparent in the visible range. The effect of the heating atmosphere and the type of substrate was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumar PM, Badrinarayanan S, Sastry M (2000) Thin Solid Films 358:122–130. doi:10.1016/S0040-6090(99)00722-1

    Article  CAS  ADS  Google Scholar 

  2. Chee YH, Cooney RP, Howe RF et al (1992) J Raman Spectrosc 123:161–166. doi:10.1002/jrs.1250230307

    Article  ADS  Google Scholar 

  3. Guang-Lei T (1787–1789) Hong-Bo H, Jian-Da S (2005). Chin Phys Lett 22:1787–1789

  4. Eiamchai P, Chindaudom P, Pokaipisit A et al (2009) Curr Appl Phys 9:707–712. doi:10.1016/j.cap.2008.06.011

    Article  ADS  Google Scholar 

  5. Wang Z, Helmersson U, Kall PO (2002) Thin Solid Films 405:50–54. doi:10.1016/S0040-6090(01)01767-9

    Article  CAS  ADS  Google Scholar 

  6. Jiang HQ, Wei Q, Cao QX et al (2008) Ceram Int 34:1039–1042. doi:10.1016/j.ceramint.2007.09.101

    Article  CAS  Google Scholar 

  7. Mardare D, Tasca M, Delibas M et al (2000) Appl Surf Sci 156:200–206. doi:10.1016/S0169-4332(99)00508-5

    Article  CAS  ADS  Google Scholar 

  8. Cho K, Chang H, Park JH et al (2008) J. Ind Eng Chem 14:860–863. doi:10.1016/j.jiec.2008.06.010

    CAS  Google Scholar 

  9. Shinde PS, Patil PS, Bhosale PN et al (2008) J Am Ceram Soc 91:1266–1272. doi:10.1111/j.1551-2916.2008.02287.x

    Article  CAS  Google Scholar 

  10. Du W, Wang H, Zhong W et al (2005) J Sol–Gel Sci Technol 34:227–231. doi:10.1007/s10971-005-2519-2

    Article  CAS  Google Scholar 

  11. Ungureanu F, Medianu R, Ghita RV et al (2007) J Optoelectron. Adv Mater 9:1457–4761

    CAS  Google Scholar 

  12. Van Bommel MJ, Bernards TNM (1997) J Sol–Gel Sci Technol 8:459–463. doi:10.1023/A:1018381706632

    Article  Google Scholar 

  13. Nikolic LM, Radonjic L, Srdic VV (2005) Ceram Int 31:261–266. doi:10.1016/j.ceramint.2004.05.012

    Article  CAS  Google Scholar 

  14. Li Z, Wu M, Liu T et al (2008) Ultramicroscopy 108:1334–1337. doi:10.1016/j.ultramic.2008.04.059

    Article  CAS  PubMed  Google Scholar 

  15. Hu L, Yoko T, Kozuka H et al (1992) Thin Solid Films 219:18–23. doi:10.1016/0040-6090(92)90718-Q

    Article  CAS  ADS  Google Scholar 

  16. Fretwell R, Douglas P (2001) J Photochem Photobiol Chem 143:229–240. doi:10.1016/S1010-6030(01)00526-3

    Article  CAS  Google Scholar 

  17. Risse G, Maths S, Bottcher H (2008) Appl Surf Sci 254:5994–6001. doi:10.1016/j.apsusc.2008.03.194

    Article  CAS  ADS  Google Scholar 

  18. O’Regan B, Gratzel M (1991) Nature 335:737–739. doi:10.1038/353737a0

    Article  Google Scholar 

  19. Dupont W D.C. http://www2.dupont.com/Titanium_Technologies/en_US/products/rpd2. Accessed 15 Apr 2009

  20. Li G, Boerio-Goates J, Woodfield BF (2004) Appl Phys Lett 85:2059–2061. doi:10.1063/1.1790596

    Article  CAS  ADS  Google Scholar 

  21. Lee HY, Kale GM (2008) Int J Appl Ceram Technol 5:657–665. doi:10.1111/j.1744-7402.2008.02248.x

    Article  CAS  Google Scholar 

  22. Oh SH, Kim DJ, Hahn SH et al (2003) Mater Lett 57:4151–4155. doi:10.1016/S0167-577X(03)00281-7

    Article  CAS  Google Scholar 

  23. Poelman H, Tomaszewski H, Poelman D et al (2004) Surf Interface Anal 36:1167–1170. doi:10.1002/sia.1867

    Article  CAS  Google Scholar 

  24. Jiang D, Xu Y, Hou B, et al. (2008) Eur J Inorg Chem 1236–1240. doi:10.1002/ejic.200700650

  25. Xie RC, Shang JK (2007) J Mater Sci 42:6583–6589. doi:10.1007/s10853-007-1506-0

    Article  CAS  ADS  Google Scholar 

  26. Niederberger M (2007) Acc Chem Res 40:793–800. doi:10.1021/ar600035e

    Article  CAS  PubMed  Google Scholar 

  27. Zhu YF, Zhang L, Gao C et al (2000) J Mater Sci 35:4049–4054. doi:10.1023/A:1004882120249

    Article  CAS  Google Scholar 

  28. Li G, Li L, Boerio-Goates J et al (2005) J Am Chem Soc 127:8659–8666. doi:10.1021/ja050517g

    Article  CAS  PubMed  Google Scholar 

  29. Legrand-Buscema C, Malibert C, Bach S (2002) Thin Solid Films 418:79–84. doi:10.1016/S0040-6090(02)00714-9

    Article  CAS  ADS  Google Scholar 

  30. Kajitvichyanukul P, Amornchat P (2005) Sci Technol Adv Mater 6:344–347. doi:10.1016/j.stam.2005.02.012

    Article  CAS  Google Scholar 

  31. Niederberger M, Garnweitner G (2006) Chem Eur J 12:7282–7302. doi:10.1002/chem.200600313

    Article  CAS  Google Scholar 

  32. Van Haecke JE, Smet PF, De Keyser K et al (2007) J Electrochem Soc 154:278–284. doi:10.1149/1.2756974

    Article  Google Scholar 

  33. Brinker CF, Scherer GW (1990) Sol–gel science. The physics and chemistry of sol–gel processing. Academic, Boston

    Google Scholar 

  34. Horprathum M, Chindaudom P, Limsuwan P (2007) Chin Phys Lett 24:1505–1508. doi:10.1088/0256-307X/24/6/021

    Article  CAS  Google Scholar 

  35. Tsumura T, Kojitani N, Umemura H et al (2002) Appl Surf Sci 196:429–436. doi:10.1016/S0169-4332(02)00081-8

    Article  CAS  ADS  Google Scholar 

  36. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Massachusetts

    Google Scholar 

  37. Poelman D, Smet PF (2003) J Phys D Appl Phys 36:1850–1857. doi:10.1088/0022-3727/36/15/316

    Article  CAS  ADS  Google Scholar 

  38. Jenkins FA, White HE (1976) Fundamentals of optics, 4th edn. McGraw-Hill, Auckland

    Google Scholar 

Download references

Acknowledgments

One of the authors (PFS) is a post-doctoral research fellow of FWO-Vlaanderen. This research was carried out under the Interuniversity attraction poles programme IAP/VI-17 (INANOMAT) financed by the Belgian State, Federal science policy office. We gratefully acknowledge Els Bruneel for help with recording of the TGA–DTA data and also Werner Knaepen for in situ XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nursen Avci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avci, N., Smet, P.F., Poelman, H. et al. Characterization of TiO2 powders and thin films prepared by non-aqueous sol–gel techniques. J Sol-Gel Sci Technol 52, 424–431 (2009). https://doi.org/10.1007/s10971-009-2028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2028-9

Keywords

Navigation