Skip to main content
Log in

Amorphous and perovskite Li3xLa(2/3)−xTiO3 (thin) films via chemical solution deposition: solid electrolytes for all-solid-state Li-ion batteries

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Thin films of amorphous and crystalline perovskite Li3xLa(2/3)−xTiO3 (LLT) (x = 0.117) are prepared by means of aqueous chemical solution deposition onto rutile TiO2 thin films as an anode, yielding an electrochemical half-cell. The Li-ion conductivity of the pin-hole free, amorphous LLT thin film (90 nm thick) is 3.8 × 10−8 S cm−1 on Pt and 1.3 × 10−8 S cm−1 on rutile TiO2, while measuring perpendicular to the thin film direction with impedance spectroscopy. Grazing angle attenuated total reflectance-Fourier transform infrared spectroscopy shows that all organic precursor molecules have been decomposed at 500 °C. In addition, in situ (heating) X-ray diffraction analysis shows that phase pure crystalline perovskite LLT (x = 0.117) is formed on top of the rutile TiO2 anode at 700 °C. Furthermore, thickness control is possible by varying the precursor solution concentration and the number of deposition cycles. The current study presents a promising synthesis route to develop all-solid-state battery devices based on multi-metal oxide materials using aqueous precursor chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Oudenhoven JFM, Baggetto L, Notten PHL (2011) All-solid-state lithium-ion microbatteries: a review of various three-demenisional concepts. Adv. Energy Mater. 2011(1):10–33

    Article  Google Scholar 

  2. Long JW, Dunn B, Rolison DR, White HS (2004) Three-dimensional battery architectures. Chem Rev 104(10):4463–4492

    Article  Google Scholar 

  3. Thangadurai V, Weppner W (2006) Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 12:81–92

    Article  Google Scholar 

  4. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Sol State Ion 180(14–16):911–916

    Article  Google Scholar 

  5. Bagetto L, Niessen RAH, Notten PHL (2008) High energy density all-solid-state batteries: a challenging concept towards 3D integration. Adv Funct Mater 18:1057–1066

    Article  Google Scholar 

  6. Roberts M, Johns P, Owen J, Brandell D, Edstrom K, Enany GE, Guery C, Golodnitsky D, Lacey M, Lecoeur C, Mazor H, Peled E, Perre E, Shaijumon MM, Simon P, Taberna PL (2011) 3D lithium ion batteries—from fundamentals to fabrication. J Mater Chem 21:9876–9890

    Article  Google Scholar 

  7. Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61:759–770

    Article  Google Scholar 

  8. Inaguma Y, Liquan C, Itoh M, Nakamura T (1993) High ionic conductivity in lithium lanthanum titanate. Sol. State Commun. 861(10):689–693

    Article  Google Scholar 

  9. Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum tinanates: a review. Chem Rev 15(21):3974–3990

    Google Scholar 

  10. Kanamura K, Akutagawa N, Dokko K (2005) Three dimensionally ordered composite solid materials for all solid/state rechargeable lithium batteries. J Power Sources 146(1–2):86–89

    Article  Google Scholar 

  11. Furusawa S, Tabuchi H, Sugiyama T, Tao S, Irvine JTS (2005) Ionic conductivity of amorphous lithium lanthanum titanate thin film. Sol State Ion 176:553–558

    Article  Google Scholar 

  12. Shan YJ, Chen L, Inaguma Y, Itoh M, Nakamura T (1995) Oxide cathode perovskite structure for rechargeable lithium batteries. J Power Sources 54:397–402

    Article  Google Scholar 

  13. Geng H, Lan J, Mei A, Lin Y, Nan CW (2011) Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3 − xTiO3 with different lithium contents”. Electrochim Acta 56(9):3406–4314

    Article  Google Scholar 

  14. Noh S, Kim J, Eom M, Shin D (2013) Surface modification of LiCoO2 with Li3xLa2/3−xTiO3 for all-solid-state lithium ion batteries using Li2S–P2S5 glass–ceramic. Ceram Int 39(7):8453–8458

    Article  Google Scholar 

  15. Ohnishi T, Takada K (2012) Synthesis and oriented control of Li-ion conducting epitaxial Li0.33La0.56TiO3 solid electrolyte thin films by pulsed laser deposition, Sol State Ion 228:80–82

  16. Ahn JK, Yoon SG (2004) Characteristics of perovskite (Li0.5La0.5)TiO3 solid electrolyte thin films grown by pulsed laser deposition for rechargeable lithium microbattery. Electrochim Acta 50:371–374

    Article  Google Scholar 

  17. Aaltonen T, Alnes M, Nilsen O, Costelle L, Fjellvag H (2010) Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition. J Mater Chem 20:2877–2881

    Article  Google Scholar 

  18. Kitaoka K, Kozuka H, Hashimoto T, Yoko T (1997) Preparation of La0.5Li0.5TiO3 perovskite thin films by sol-gel method. J Mater Sci 32(8):2063–2070

    Article  Google Scholar 

  19. Hardy A, D’Haen J, Van Bael MK, Mullens J (2007) An aqueous solution–gel citratoperoxo–Ti(IV) precursor:synthesis, gelation, thermo-oxidative decomposition and oxide crystallization. J Sol-Gel Sci Technol 44:65–74

    Article  Google Scholar 

  20. Truijen I, Van Bael MK, van den Rul H, Mullens J (2007) Synthesis of thin dense titania films via an aqueous solution-gel method. J Sol–Gel Sci Technol 41(1):43–48

    Article  Google Scholar 

  21. Knaepen W, Detavenier C, van Meirhaege RL (2008) Jordan Sweet J, Lavoie (2008), In-situ X-ray Diffraction study of Metal Induced Crystallization of amorphous silicon. Thin Sol. Films 516(15):4946–4952

    Article  Google Scholar 

  22. Sanchez-Rodriguez D, Farjas J, Roura P, Richart S, Mestres N, Obradors X, Puig T (2013) Thermal analysis for low temperature synthesis of oxide thin films from chemical solutions. J Phys Chem C 117:20133–20138

    Article  Google Scholar 

  23. Connor PA, Dobson KD, McQuillan AJ (1999) Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir 15:2402–2408

    Article  Google Scholar 

  24. Farmer VC (1974) The infrared spectra of minerals

  25. Rouchin D, Rochat N, Gustavo F, Chabli A, Renault O, Besson P (2002) Study of ultrathin silicon oxide films by FTIR-ATR and ARXPS after wet chemical cleaning processes. Surf Interface Anal 34:445–450

    Article  Google Scholar 

  26. Nyquist RA, Putzig CL, Leugers MA (1997) Handbook of infrared and raman spectra of inorganic compounds and organic salts. Academic Press, Massachudetts

    Google Scholar 

  27. Hardy A, Nelis D, Vanhoyland G, Van Bael MK, Van den Rul H, Mullens J, Van Poucke LC, D’Haen J, Goux L, Wouters DJ (2005) Effect of pyrolysis temperature on the properties of Bi3.5La0.5Ti3O12 thin films deposited by aqueous chemical solution deposition. Mater Chem Phys 92(2–3):431–437

    Article  Google Scholar 

  28. Zhang Q, Zhang Y, Cai C, Guo Y, Reid JP, Zhang Y (2014) In situ observation on the dynamic process of evaporation and crystallization of sodium nitrate droplets on a ZnSe substrate by FTIR-ATR. J Phys Chem A 118:2728–2737

    Article  Google Scholar 

  29. Irusta S, Cornaglia LM, Lombardo EA (2004) Effects of rhodium and platinum on the reactivity of lanthanum phases. Mater. Chem. and Phys. 86:440–447

    Article  Google Scholar 

  30. Salzer R, Dressler J, Gergs MK, Michel D, Schlemmbach H, Windsch W, Reich P (1990) Structural investigation of (Pb, La)TiO3 ceramics by second derivative FTIR spectroscopy. J Mol Struct 219:177–182

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by the IWT Flanders (SBO project SOSLion). Christopher De Dobbelaere is a Post-Doctoral Research Fellow of the Research Foundation Flanders (FWO-Vlaanderen). Tim Vangerven and Peter-Paul Harks are acknowledged for preparing and starting up the impedance spectroscopy measurements. Thanks to Elsy Thijssen for performing the ICP-AES measurements and Hanne Damm for the thermal analysis. Special thanks to Bart Ruttens for all the work regarding SEM and XRD samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. van den Ham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Ham, E.J., Peys, N., De Dobbelaere, C. et al. Amorphous and perovskite Li3xLa(2/3)−xTiO3 (thin) films via chemical solution deposition: solid electrolytes for all-solid-state Li-ion batteries. J Sol-Gel Sci Technol 73, 536–543 (2015). https://doi.org/10.1007/s10971-014-3511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3511-5

Keywords

Navigation