Skip to main content
Log in

Biochar derived from Salvadora persica branches biomass as low-cost adsorbent for removal of uranium(VI) and thorium(IV) from water

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In recent years, biochar based adsorbents have been given more attention for organic and inorganic pollutants removal. Therefore, in this study, a new low-cost biochar adsorbent derived from Salvadora persica branches (BSP) was prepared, characterized and investigated for removal of U(VI) and Th(IV) radioactive elements from water. The effects of batch adsorption conditions were studied. The maximum removal efficiencies are around 99% for each of U(VI) and Th(IV), with adsorption capacities 85.71 mg g−1 and 84.97 mg g−1 respectively. It has been found the adsorption process of U(VI) and Th(IV) is spontaneous, exothermic and follows pseudo-second-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Majdan M, Pikus S, Gajowiak A, Gładysz-Płaska A, Krzyżanowska H, Żuk J, Bujacka M (2010) Characterization of uranium(VI) sorption by organobentonite. Appl Surf Sci 256(17):5416–5421

    Article  CAS  Google Scholar 

  2. Amit K, Manjoor A, Pandey Badri N (2013) Understanding the biological effects of thorium and developing efficient strategies for its decorporation and mitigation. BARC Newsl 335:55–60

    Google Scholar 

  3. Kim JS, Han KS, Kim SJ, Kim S-D, Lee J-Y, Han C, Kumar JR (2016) Synergistic extraction of uranium from Korean black shale ore leach liquors using amine with phosphorous based extractant systems. J Radioanal Nucl Chem 307(2):843–854

    Article  CAS  Google Scholar 

  4. Bayyari MA, Nazal MK, Khalili FI, Asoudani E (2017) Synergistic effect of tri-n-butyl phosphate (TBP) or tri-n-octyl phosphine oxide (TOPO) with didodecylphosphoric acid (HDDPA) on extraction of uranium(VI) and thorium(IV) ions. J Radioanal Nucl Chem 312(1):133–139

    Article  Google Scholar 

  5. Bayyari MA, Nazal MK, Khalili FI (2010) The effect of ionic strength on the extraction of thorium(IV) from perchlorate solution by didodecylphosphoric acid (HDDPA). Arab J Chem 3(2):115–119

    Article  CAS  Google Scholar 

  6. Bayyari MA, Nazal MK, Khalili FI (2010) The effect of ionic strength on the extraction of Thorium(IV) from nitrate solution by didodecylphosphoric acid (HDDPA). J Saudi Chem Soc 14(3):311–315

    Article  CAS  Google Scholar 

  7. Anirudhan TS, Rijith S, Tharun AR (2010) Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloids Surf A 368(1–3):13–22

    Article  CAS  Google Scholar 

  8. Ioannou K, Hadjiyiannis P, Liatsou I et al (2019) U(VI) adsorption by biochar fiber–MnO2 composites. J Radioannal Nucl Chem 320:425–432. https://doi.org/10.1007/s10967-019-06479-9

    Article  CAS  Google Scholar 

  9. Liu S, Luo J, Ma J, Li J, Li S, Meng L, Liu S (2020) Removal of uranium from aqueous solutions using aminefunctionalized magnetic platelet large-pore SBA-15. J Nucl Sci Technol. https://doi.org/10.1080/00223131.2020.1796838

    Article  Google Scholar 

  10. Soonthornwiphat N, Kobayashi Y, Toda K, Kuroda K, Islam CR, Otake T, Elakneswaran Y, Provis JL, Sato T (2020) Encapsulation of Sr-loaded titanate spent adsorbents in potassium aluminosilicate geopolymer. J Nucl Sci Technol 57(10):1181–1188. https://doi.org/10.1080/00223131.2020.1775717

    Article  CAS  Google Scholar 

  11. Nazal MK, Al-Bayyari M, Khalili FI (2019) Salvadora persica branches biomass adsorbent for removal of uranium(VI) and thorium(IV) from aqueous solution: kinetics and thermodynamics study. J Radioanal Nucl Chem 321:985–996. https://doi.org/10.1007/s10967-019-06668-6

    Article  CAS  Google Scholar 

  12. Mahramanlioglu M, Bicer IO, Misirli T, Kilislioglu A (2007) Removal of uranium by the adsorbents produced from coffee residues. J Radioanal Nucl Chem 273:621–624

    Article  CAS  Google Scholar 

  13. Šabanović E, Muhić-Šarac T, Nuhanović M, Memić M (2019) Biosorption of uranium(VI) from aqueous solution by Citrus limon peels: kinetics, equilibrium and batch studies. J Radioanal Nucl Chem 319:425–435. https://doi.org/10.1007/s10967-018-6358-3

    Article  CAS  Google Scholar 

  14. Öter Ç, Zorer ÖS (2019) Adsorption behaviours of Th(IV) and U(VI) using nitric acid (HNO3) modified activated carbon: equilibrium, thermodynamic and kinetic studies. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1691184

    Article  Google Scholar 

  15. Halawany HS (2012) A review on miswak (Salvadora persica) and its effect on various aspects of oral health. Saudi Dent J 24(2):63–69

    Article  Google Scholar 

  16. AG Daful, MR Chandraratne, (2020) Biochar production from biomass waste-derived material. In: Encyclopedia of renewable and sustainable materials, 1st edn, vol 4. Elsevier

  17. Tan X, Liu Y, Zeng G, Wang X, Xinjiang H, Yanling G, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  Google Scholar 

  18. Langmuir I. (1916). The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38(11): 2221–2295. DOI.https://doi.org/10.1021/ja02242a004

  19. Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57(385471):1100–1107

    Google Scholar 

  20. Temkin M, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS 12(3):217–222

    Google Scholar 

  21. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Sven Vetenskapsakademiens Handl 24:1–39

    Google Scholar 

  22. Ho Y, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Protect 76:332–340

    Article  CAS  Google Scholar 

  23. Weber W, Asce JM Jr, Morris JC (1963) Kinetic of adsorption on carbon from solutions. J Sanitary Eng Div Proc Am Soc Civ Eng 89:31–59

    Google Scholar 

  24. IR-spectrum table and chart. https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html. Accessed 26 Sept 2020

  25. Fu P, Hu S, Xiang J, Sun L, Yang T, Zhang A, Wang Y, Chen G (2009) Effects of pyrolysis temperature on characteristics of porosity in biomass chars. In: International conference on energy and environment technology, Guilin, October. pp 109–112

  26. Suman S, Gautam S (2016) Pyrolysis of coconut husk biomass: analysis of its biochar properties. Energy Sour Part A Recov Util Environ Eff. https://doi.org/10.1080/15567036.2016.1263252

    Article  Google Scholar 

  27. Wang J, Hu X, Liu Y, Xie SB, Bao ZL (2010) Biosorption of uranium(VI) by immobilized Aspergillus fumigatus beads. J Environ Radioactiv 101(6):504

    Article  CAS  Google Scholar 

  28. Li F, Li D, Li X, Liao J, Li S, Yang J, Yang Y, Tang J, Liu N (2016) Microorganism-derived carbon microspheres for uranium removal from aqueous solution. Chem Eng J 284:630–639

    Article  CAS  Google Scholar 

  29. Moulin C, Amekraz B, Hubert S, Moulin V (2001) Study of thorium hydrolysis species by electrosprayionization mass spectrometry. Anal Chim Acta 441:269

    Article  CAS  Google Scholar 

  30. Lowell S, Shields JE (1991) Powder surface area and porosity, 3rd edn. Chapman and Hall, New Yourk

    Google Scholar 

  31. Li L, Quinlivan PA, Knappe DR (2002) Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40(12):2085–2100. https://doi.org/10.1016/S0008-6223(02)00069-6

    Article  CAS  Google Scholar 

  32. Ding D, Xin X, Li L, Hu N, Li G, Wang Y, Fu P (2014) Removal and recovery of U(VI) from low concentration radioactive wastewater by ethylenediamine-modified biomass of Aspergillus niger. Water Air Soil Pollut 225:2206–2222

    Article  Google Scholar 

  33. Zhang Z, Cao X, Liang P, Liu Y (2013) Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J Radioanal Nucl Chem 295:1201–1208

    Article  CAS  Google Scholar 

  34. Cheira MF, Mira HI, Sakr AK, Mohamed SA (2019) Adsorption of U(VI) from acid solution on a low-cost sorbent: equilibrium, kinetic, and thermodynamic assessments. Nucl Sci Tech 30:156. https://doi.org/10.1007/s41365-019-0674-3

    Article  Google Scholar 

  35. Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93(2007):127–143

    Article  CAS  Google Scholar 

  36. Tran HH, Roddick FA, O’Donnell JA (1993) Comparison of chromatography and desiccant sillca gels for the adsorption of metal ions-I. Adsorption and kinetics. Water Res 33:2992–3000

    Article  Google Scholar 

  37. Rout S, Muduli B, Kumar A, Pulhani V (2020) Removal of uranium(VI) from water using hydroxyapatite coated activated carbon powder nanocomposite. J Environ Sci Health Part A 55(5):596–605. https://doi.org/10.1080/10934529.2020.1721228

    Article  CAS  Google Scholar 

  38. Morsy A, Taha MH, Saeed M et al (2019) Isothermal, kinetic, and thermodynamic studies for solid-phase extraction of uranium (VI) via hydrazine-impregnated carbon-based material as efficient adsorbent. Nucl Sci Tech 30:167. https://doi.org/10.1007/s41365-019-0686-z

    Article  Google Scholar 

  39. BoveiriMonji A, Ghoulipour V, Mallah MH, Maraghe-Mianji B (2015) Selective sorption of thorium(IV) from highly acidic aqueous solutions by rice and wheat bran. J Radioanal Nucl Chem 303:949–958

    Article  CAS  Google Scholar 

  40. Khalili FI, Al-Banna G (2015) Adsorption of uranium(VI) and thorium(IV) by insolubilized humic acid from Ajloun soil—Jordan. J Environ Radioact 146:16–26

    Article  CAS  Google Scholar 

  41. Ting C, Nan Z, Zhao X, Xin H, Zhuhong D (2019) Integrated comparisons of thorium(IV) adsorption onto alkali-treated duckweed biomass and duckweed-derived hydrothermal and pyrolytic biochar. Environ Sci Pollut Res 26:2523–2530

    Article  Google Scholar 

  42. Hadjittofi L, Pashalidis I (2016) Thorium removal from acidic aqueous solutions by activated biochar derived from cactus fibers. Desalination Water Treat 57(57):27864–27868. https://doi.org/10.1080/19443994.2016.1168580

    Article  CAS  Google Scholar 

  43. Gado MA, Atia BM, Cheira MF, Abdou AA (2019) Thorium ions adsorption from aqueous solution by amino naphthol sulphonate coupled chitosan. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1683552

    Article  Google Scholar 

  44. Gök M, Sert Ş, Özevci G, Eral M (2018) Efficient adsorption of Th(IV) from aqueous solution by modified SBA-15 mesoporous silica. Nucl Sci Tech 29:95. https://doi.org/10.1007/s41365-018-0432-y

    Article  Google Scholar 

  45. Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  46. Pholosi A, Naidoo EB, Ofomaja AE (2020) Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: a comparative kinetic and diffusion study. S Afr J Chem Eng 32:39–55

    Google Scholar 

  47. Hu X, Wang J, Liu Y, Li X, Zeng G, Bao Z, Zeng X, Chen A, Long F (2011) Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. J Hazard Mater 185(1):306–314

    Article  CAS  Google Scholar 

  48. Saha P, Chowdhury S (2011) Insight into adsorption thermodynamics. In: Tadashi M (ed) Thermodynamics. ISBN: 978–953–307–544–0, InTech, Available from: http://www.intechopen.com/books/thermodynamics/insight-intoadsorption-thermodynamics

  49. Zaghouane-Boudiaf H, Boutahala M (2011) Adsorption of 2, 4, 5-trichlorophenol by organo-montmorillonites from aqueous solutions: kinetics and equilibrium studies. Chem Eng J 170:120–126. https://doi.org/10.1016/j.cej.2011.03.039

    Article  CAS  Google Scholar 

  50. Fendorf SE, Li G (1996) Kinetics of chromate reduction by ferrous iron. Environ Sci Technol 30(5):1614–1617. https://doi.org/10.1021/es950618m

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen K. Nazal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albayari, M., Nazal, M.K., Khalili, F.I. et al. Biochar derived from Salvadora persica branches biomass as low-cost adsorbent for removal of uranium(VI) and thorium(IV) from water. J Radioanal Nucl Chem 328, 669–678 (2021). https://doi.org/10.1007/s10967-021-07667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07667-2

Keywords

Navigation