Skip to main content
Log in

Adsorption of U(VI) from acid solution on a low-cost sorbent: equilibrium, kinetic, and thermodynamic assessments

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this paper, waste clay was cured with ethyl acetate to obtain treated clay (TC), which was modified with gallic acid to obtain a low-cost sorbent that was characterized by EDX, SEM, and FTIR analysis. Uranium(VI) adsorption was achieved using the batch adsorption method on the TC and gallic acid-modified treated clay (GMTC). The maximum uptakes of U(VI) on TC and GMTC were 37.2 and 193.0 mg/g, respectively. The U(VI) adsorption kinetics on the TC and GMTC sorbents were well-fitted by the pseudo-second-order mechanism, and the adsorption equilibrium followed the Langmuir model. The optimum parameters were applied to El Sela leach solution for uranium recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Rajkumar, M. Muthukumar, R. Sivakumar, Noval approach for the treatment and recycle of wastewater from soya edible oil refinery industry: an economic perspective. Res. Conserv. Recycl. 54, 752–758 (2010). https://doi.org/10.1016/j.resconrec.2009.12.005

    Article  Google Scholar 

  2. C. Weng, C. Tsai, S. Chu et al., Adsorption characteristics of copper(II) onto spent activated clay. J. Sep. Purif. Technol. 45, 187–197 (2007). https://doi.org/10.1016/j.seppur.2006.09.009

    Article  Google Scholar 

  3. J.L. Liao, W. Wen, B. Li et al., Interaction between uranium and humic acid(II): complexation, precipitation and migration behavior of U(VI) in the presence of humic substances. Nucl. Sci. Technol. 24, 030301 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.03.010

    Article  Google Scholar 

  4. H. Wang, X.Z. Shao, Q. Tian et al., Synthesis of TBP-coated magnetic Pst-DVB particles for uranium separation. Nucl. Sci. Tech. 25, 030301 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.030301

    Article  Google Scholar 

  5. C.-Y. Xie, S.-P. Jing, Y. Wang et al., Adsorption of uranium (VI) onto amidoxime-functionalized ultrahigh molecular weight polyethylene fibers from aqueous solution. Nucl. Sci. Technol. 28, 94 (2017). https://doi.org/10.1007/s41365-017-0251-6

    Article  Google Scholar 

  6. X. Xu, X.-J. Ding, J.-X. Ao et al., Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution. Nucl. Sci. Tech. 30, 20 (2019). https://doi.org/10.1007/s41365-019-0543-0

    Article  Google Scholar 

  7. L. Xu, J.-T. Hu, H.-J. Ma et al., Amidoxime-based adsorbents prepared by cografting acrylic acid with acrylonitrile onto HDPE fiber for the recovery of uranium from seawater. Nucl. Sci. Tech. 28, 45 (2017). https://doi.org/10.1007/s41365-017-0198-7

    Article  Google Scholar 

  8. Ü.H. Kaynar, Ü. Hiçsönmez, S.Ç. Kaynar et al., Sorption of uranium(VI) from aqueous solutions by DEEA organovolcanic: isotherms, kinetic and thermodynamic studies. Nucl. Sci. Technol. 29, 30 (2018). https://doi.org/10.1007/s41365-018-0359-3

    Article  Google Scholar 

  9. M.M. Zareh, A. Aldaher, A.E.M. Hussein et al., Uranium adsorption from a liquid waste using thermally and chemically modified bentonite. J. Radioanal. Nucl. Chem. 295, 1153–115 (2013). https://doi.org/10.1007/s10967-012-2234-8

    Article  Google Scholar 

  10. D. Humelnicu, E. Popovici, C. Mita, Study on the retention of uranyl ion on modified clays with titanium oxide. J. Radioanal. Nucl. Chem. 279, 131–136 (2009). https://doi.org/10.1007/s10967-007-7194-z

    Article  Google Scholar 

  11. G. Wang, X. Wang, X. Chai et al., Adsorption of U(VI) from aqueous solution on calcined and acid activated kaolin. Appl. Clay Sci. 47, 448–451 (2010). https://doi.org/10.1016/j.clay.2009.11.003

    Article  Google Scholar 

  12. M. Majdan, S. Pikus, A. Gajwaik et al., Characterization of U(VI) sorption by organobentonite. Appl. Surf. Sci. 256, 5416–5421 (2010). https://doi.org/10.1016/j.apsusc.2009.12.123

    Article  Google Scholar 

  13. S. Sert, M. Eral, Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2-MCM-41) using statistical design method. J. Nucl. Mater. 406, 285–292 (2010). https://doi.org/10.1016/j.jnucmat.2010.08.024

    Article  Google Scholar 

  14. Y. Sun, S. Yang, G. Sheng et al., Comparison of U(VI) removal from contaminated ground water by nanoporous alumina and non-nanoporous alumina. Sep. Purif. Technol. 83, 196–203 (2011). https://doi.org/10.1016/j.seppur.2011.09.050

    Article  Google Scholar 

  15. C. Tournassat, R.M. Tinnacher, S. Grangeon et al., Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: a surface complexation model accounting for the spillover effect on surface potential. Geochim. Cosmochim. Acta 220, 291–308 (2018). https://doi.org/10.1016/j.gca.2017.09.049

    Article  Google Scholar 

  16. B. Campos, J. Aguilar-Carrillo, M. Algarra et al., Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material. Appl. Clay Sci. 85, 53–63 (2013). https://doi.org/10.1016/j.clay.2013.08.046

    Article  Google Scholar 

  17. M.M. Fernandes, B. Baeyens, R. Dähn et al., U(VI) sorption on montmorillonite in the absence and presence of carbonate: a macroscopic and microscopic study. Geochim. Cosmochim. Acta 93, 262–277 (2012). https://doi.org/10.1016/j.gca.2012.04.017

    Article  Google Scholar 

  18. S. Sachs, G. Bernhard, Sorption of U(VI) onto an artificial humic substance-kaolinite-associate. Chemosphere 72, 1441–1447 (2008). https://doi.org/10.1016/j.chemosphere.2008.05.027

    Article  Google Scholar 

  19. C. Joseph, M. Stockmann, K. Schmeide et al., Sorption of U(VI) onto Opalinus clay: effects of pH and humic acid. Appl. Geochem. 36, 104–117 (2013). https://doi.org/10.1016/j.apgeochem.2013.06.016

    Article  Google Scholar 

  20. D.L. Guerraa, V.L. Leidensa, R.R. Vianaa et al., Amazon kaolinite functionalized with diethylenetriamine moieties for U(VI) removal: thermodynamic of cation-basic interactions. J. Hazard. Mater. 180, 683–692 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.092

    Article  Google Scholar 

  21. S.K. Loh, K.Y. Cheong, J. Salimon, Surface-active physicochemical characteristics of spent bleaching earth on soil-plant interaction and water-nutrient uptake: a review. Appl. Clay Sci. 140, 59–65 (2017). https://doi.org/10.1016/j.clay.2017.01.024

    Article  Google Scholar 

  22. J. Tang, B. Mu, L. Zong et al., Facile and green fabrication of magnetically recyclable carboxyl: functionalized attapulgite/carbon nanocomposites derived from spent bleaching earth for wastewater treatment. Chem. Eng. J. 322, 102–114 (2017). https://doi.org/10.1016/j.cej.2017.03.116

    Article  Google Scholar 

  23. W.T. Tsai, H.P. Chen, M.F. Hsieh, Regeneration of spent bleaching earth by pyrolysis in a rotary furnace. J. Anal. Appl. Pyrol. 63, 157–17 (2002). https://doi.org/10.1016/S0165-2370(01)00150-4

    Article  Google Scholar 

  24. J. Madejova, FTIR techniques in clay mineral studies. Vib. Spectrosc. 31, 1–10 (2002). https://doi.org/10.1016/S0924-2031(02)00065-6

    Article  Google Scholar 

  25. M.F. Cheira, B.M. Atia, M.N. Kouraim, Uranium(VI) recovery from acidic leach liquor by Ambersep 920U SO4 resin: kinetic, equilibrium and thermodynamic studies. J. Radiat. Res. Appl. Sci. 10, 307–319 (2017). https://doi.org/10.1016/j.jrras.2017.07.005

    Article  Google Scholar 

  26. S.E. Crawford, S. Lofts, K. Liber, The role of sediment properties and solution pH in the adsorption of uranium(VI) to freshwater sediments. Environ. Poll. 220, 873–881 (2017). https://doi.org/10.1016/j.envpol.2016.10.071

    Article  Google Scholar 

  27. A.M.L. Kraepiel, K. Keller, F.M.M. Morel, A model for metal adsorption on montmorillonite. J. Colloid Interface Sci. 210, 43–54 (1999). https://doi.org/10.1006/jcis.1998.5947

    Article  Google Scholar 

  28. M.F. Cheira, Synthesis of pyridylazo resorcinol–functionalized Amberlite XAD-16 and its characteristics for uranium recovery. J. Environ. Chem. Eng. 3, 642–652 (2015). https://doi.org/10.1016/j.jece.2015.02.003

    Article  Google Scholar 

  29. Y.S. Ho, G. Mackay, Pseudo-second order model for sorption processes. Proc. Biochem. 34, 451–465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  30. F. Wu, R. Tseng, R. Juang, Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 150, 366–373 (2009). https://doi.org/10.1016/j.cej.2009.01.014

    Article  Google Scholar 

  31. F. Wu, R. Tseng, R. Juangcd, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153, 1–8 (2009). https://doi.org/10.1016/j.cej.2009.04.042

    Article  Google Scholar 

  32. P.S. Ghosal, A.K. Gupta, Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liquids 225, 137–146 (2017). https://doi.org/10.1016/j.molliq.2016.11.058

    Article  Google Scholar 

  33. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 1–11 (2017). https://doi.org/10.1155/2017/3039817

    Article  Google Scholar 

  34. M.M. Dubinin, The potential theory of adsorption of gases and vapours for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235–241 (1960)

    Article  Google Scholar 

  35. X. Zhang, C. Jiao, J. Wang et al., Removal of uranium(VI) from aqueous solutions by magnetic Schiff base: kinetic and thermodynamic investigation. Chem. Eng. J. 198–199, 412–419 (2012). https://doi.org/10.1016/j.cej.2012.05.090

    Article  Google Scholar 

  36. H. Heshmati, M. Torab-Mostaedi, H.G. Gilani et al., Kinetic, isotherm, and thermodynamic investigations of uranium(VI) adsorption on synthesized ion-exchange chelating resin and prediction with an artificial neural network. Desalt. Water Treat. 55, 1076–1087 (2014). https://doi.org/10.1080/19443994.2014.922495

    Article  Google Scholar 

  37. Y.M. Khawassek, Production of commercial uranium concentrate from El-Sela shear zone mineralized ore material, southeastern desert: Egypt, at Inshas pilot plant unit. Nucl. Sci. Sci. J. 3, 169–179 (2014)

    Google Scholar 

  38. Deer WA, Howie RA, Zussman J (2013) An introduction to the rock-forming minerals. 3ed Mineralogical Society of Great Britain and Ireland. https://doi.org/10.1180/DHZ

  39. A.K. Sakr, S.A. Mohamed, H.I. Mira et al., Successive leaching of uranium and rare earth elements from El Sela mineralization. J. Sci. Eng. Res. 5, 95–111 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed F. Cheira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheira, M.F., Mira, H.I., Sakr, A.K. et al. Adsorption of U(VI) from acid solution on a low-cost sorbent: equilibrium, kinetic, and thermodynamic assessments. NUCL SCI TECH 30, 156 (2019). https://doi.org/10.1007/s41365-019-0674-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0674-3

Keywords

Navigation