Skip to main content
Log in

Synergistic effects of graphite and carbon nanotube hybrid fillers on key properties of epoxidized natural rubber nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Nanocomposites of epoxidized natural rubber (ENR) filled with graphite (GP), carbon nanotubes (CNTs), and CNTs/GP hybrid fillers were prepared and characterized. It was found that both the gum and filled ENR compounds exhibit a reversion curve, attributed to the breaking of weak -O-O- linkages. Furthermore, increasing GP loadings in ENR-GP and ENR-CNTs/GP hybrid composites lead to elevated cure curves and torque differences, indicating higher crosslink density and stiffness of the vulcanizates. These changes are attributed to the increasing chemical interaction between polar functional groups in ENR molecules and nanofiller surfaces, as confirmed by FTIR analysis. That is, a decrease in OH and epoxide groups, along with an increase in ether linkages were observed. Moreover, ENR-CNTs/GP hybrid composites exhibit even higher curing curves, torque differences, Payne effect, total bound rubber content, electrical conductivity, and dielectric constant due to finer filler dispersion and distribution. This is attributed to the formation of interconnected infinite networks that rapidly reach the percolation threshold concentration. Additionally, the formation of CNTs-GP-CNTs connections enhances mechanical strength, heat conduction, and the tunneling effect of electrons. This confirms the synergistic effects of graphite and carbon nanotube hybrid fillers on key properties in ENR-CNTs/GP hybrid nanocomposites, indicating their potential applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

The data are available from the corresponding author upon sensible request.

References

  1. Phanny Y, Azura R, Ismail H (2013) Effect of different origins of natural rubber on the properties of carbon black filled natural rubber composites. ASEAN Eng J Part B 2(1):60–67

    Google Scholar 

  2. Millard E (2019) In: Schmidt M, Giovannucci D, Palekhov D, Hansmann B (eds). Recent experiences from the natural rubber industry and its movement towards sustainability. Sustainable Global Value Chains. Springer, New York p. 499–520

  3. Matchawet S, Kaesaman A, Bomlai P, Nakason C (2016) Electrical, dielectric, and dynamic mechanical properties of conductive carbon black/epoxidized natural rubber composites. J Comp Mat 50(16):2191–2202

    Article  CAS  Google Scholar 

  4. Shooli SA, Tavakoli M (2016) Styrene Butadiene rubber/epoxidized natural rubber (SBR/ENR50) nanocomposites containing nanoclay and carbon black as fillers for application in tire-tread compounds. J Macro Sci Part B 55(10):969–983

    Article  Google Scholar 

  5. Teh PL, Ishak ZAM, Hashim AS, Karger-Kocsis J, Ishiaku US (2006) Physical properties of natural rubber/organoclay nanocomposites compatibilized with epoxidized natural rubber. J Appl Polym Sci 100:1083–1092

    Article  CAS  Google Scholar 

  6. Damampai K, Pichaiyut S, Stöckelhuber KW, Das A, Nakason C (2022) Ferric ions crosslinked epoxidized natural rubber filled with carbon nanotubes and conductive carbon black hybrid fillers. Polymers 14(20):4392

    CAS  PubMed  Google Scholar 

  7. Balendran BK, Yaragalla S (2022) Epoxidized natural rubber/acid functionalized carbon nanotubes composites for enhanced thermo-mechanical and oxygen barrier performance. Polym Eng Sci 62(3):861

    Article  Google Scholar 

  8. Krainoi A, Johns J, Kalkornsurapranee E, Nakaramontri Y (2021) In: Ghosh PK, Datta, K, Rushi AD (eds) Carbon nanotubes reinforced natural rubber composites. Carbon Nanotubes-Redefining the World of Electronics. IntechOpen. https://doi.org/10.5772/intechopen.87724

  9. Kummerlöwe C, Vennemann N, Pieper S, Siebert A, Nakaramontri Y (2014) Preparation and properties of carbon-nanotube composites with natural rubber and epoxidized natural rubber. Polim 59(11):11–12

    Google Scholar 

  10. Nakaramontri Y, Nakason C, Kummerlöwe C, Vennemann N (2017) Enhancement of electrical conductivity and other related properties of epoxidized natural rubber/carbon nanotube composites by optimizing concentration of 3-aminopropyltriethoxy silane. Polym Eng Sci 57:381–391

    Article  CAS  Google Scholar 

  11. Moolsin S, Sawangkan D (2022) Epoxidized natural rubber/silane modified silica nanocomposites prepared in latex stage. J Metal Mat Min 32(1):118–123

    Article  CAS  Google Scholar 

  12. Pithaksareetham N, Hongkarnjanakul N, Suchat S (2018) Eco-nanocomposites with epoxidized natural rubber for improved mechanical properties essential to unmanned aerial vehicles propeller applications. Adv Polym Technol 37:2946–2957

    Article  CAS  Google Scholar 

  13. Jarnthong M, Peng Z, Lopattananon N, Nakason C (2017) Nanosilica-reinforced Epoxidized natural rubber nanocomposites: Effect of Epoxidation level on morphological and mechanical properties. Polym Compos 38:1151–1157

    Article  CAS  Google Scholar 

  14. He C, She X, Peng Z, Zhong J, Liao S, Gong W, Liaob J, Kong L (2015) Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: Rheological and positron annihilation studies. Phy Chem Chem Phy 17:12175–12184

    Article  CAS  Google Scholar 

  15. Yaragalla S, Chandran CS, Kalarikkal N, Subban RHY, Chan CH, Thomas S (2015) Effect of reinforcement on the barrier and dielectric properties of epoxidized natural rubber–graphene nanocomposites. Polym Eng Sci 55:2439–2447

    Article  CAS  Google Scholar 

  16. Siriwas T, Pichaiyut S, Susoff M, Petersen S, Nakason C (2023) Graphene-filled natural rubber nanocomposites: Influence of the composition on curing, morphological, mechanical, and electrical properties. Exp Polym Lett 17(8):819–836

    Article  CAS  Google Scholar 

  17. She X, He C, Peng Z, Kong L (2014) Molecular-level dispersion of graphene into epoxidized natural rubber: Morphology, interfacial interaction and mechanical reinforcement. Polymer 55(26):6803–6810

    Article  CAS  Google Scholar 

  18. Barrios SU, Santana MH, Verdejo R, Miguel A, Manchado L (2020) Design of rubber composites with autonomous self-healing capability. ACS Omega 5:1902–1910

    Article  Google Scholar 

  19. Kitisavetjit W, Nakaramontri Y, Pichaiyut S, Wisunthorn S, Nakason C, Kiatkamjornwong S (2021) Influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites. Polym Test 93:106981

    Article  CAS  Google Scholar 

  20. Cao L, Huang J, Chen K (2018) Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility. ACS Sust Chem Eng 8 6(11):14802–14811

  21. Venkat S, Dhamodharan R (2012) Epoxidized natural rubber–magnetite nanocomposites for oil spill recovery. J Mat Chem A 1(3):868–876

    Google Scholar 

  22. Salaeh S, Kao-ian P (2022) Conductive epoxidized natural rubber nanocomposite with mechanical and electrical performance boosted by hybrid network structures. Polym Test 108:107493

    Article  CAS  Google Scholar 

  23. Gbaguidi A, Namilae S, Kim D (2020) Synergy effect in hybrid nanocomposites based on carbon nanotubes and graphene nanoplatelets. Nanotech 31:255704

    Article  CAS  Google Scholar 

  24. Luo X, Yang G, Schubert DW (2022) Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy. Adv Compos Hybrid Mater 5:250–262

  25. Krainoi A, Boonkerd K (2022) Novel hybrid natural rubber nanocomposites with carbon nanotube and cellulose nanofiber for strain-sensitive sensor. Indus Crop Pro 187:Part B, 115455

  26. Thongkong N, Wisunthorn S, Pichaiyut S, Nakason C (2020) Natural rubber nanocomposites based on hybrid filler of zinc nanoparticles and carbon nanotubes: Electrical conductivity and other related properties. Exp Polym Lett 14(12):1137–1154

    Article  CAS  Google Scholar 

  27. Nakaramontri Y, Pichaiyut S, Wisunthorn S, Nakason C (2017) Hybrid carbon nanotubes and conductive carbon black in natural rubber composites to enhance electrical conductivity by reducing gaps separating carbon nanotube encapsulates. Eur Polym J 90:467–484

    Article  CAS  Google Scholar 

  28. Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Techno 221:351–358

    Article  CAS  Google Scholar 

  29. Nakaramontri Y, Kummerlowe C, Vennemann N, Wisunthorn S, Pichaiyut S, Nakason C (2018) Effect of bis(triethoxysilylpropyl)tetrasulfide (TESPT) on properties of carbon nanotubes and conductive carbon black hybridized filler filled natural rubber nanocomposites. Exp Polym Lett 12(10):867–884

    Article  CAS  Google Scholar 

  30. Krainoi A, Kummerlöwe C, Nakaramontri Y, Wisunthorn S, Vennemann N, Pichaiyut S, Kiatkamjornwong S, Nakason C (2020) Novel natural rubber composites based on silver nanoparticles and carbon nanotubes hybrid filler. Polym Comp 41:443–458

    Article  CAS  Google Scholar 

  31. Xu Z, Song Y, Zheng Q (2019) Payne effect of carbon black-filled natural rubber compounds and their carbon black gels. Polymer 185:121953

    Article  CAS  Google Scholar 

  32. Kaewsakul W, Sahakaro K, Dierkes WK, Noordermeer JWM (2012) Optimization of mixing conditions for silica-reinforced natural rubber tire tread compounds. Rub Chem Technol 85(2):277–294

    Article  CAS  Google Scholar 

  33. Sumfleth J, Adroher XC, Schulte K (2009) Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multiwall carbon nanotubes and carbon black. J Mater Sci 44(12):3241–3247

    Article  CAS  Google Scholar 

  34. Cheng B, Lu X, Zhou J, Qin R, Yang Y (2019) Dual Cross-Linked Self-Healing and Recyclable Epoxidized Natural Rubber Based on Multiple Reversible Effects. ACS Sustain Chem Eng 7(4):4443–4455

    Article  CAS  Google Scholar 

  35. Velisek J, Koplik R, Cejpek K (2020) The Chemistry of Food. John Wiley & Sons Inc, New York

    Google Scholar 

  36. Barbosa R, Nunesa AT, Ambrósio JD (2017) Devulcanization of natural rubber in composites with distinct crosslink densities by twin-screw extruder. Mater Res 20(2):77–83

    Article  Google Scholar 

  37. Damampai K, Pichaiyut S, Mandal S, Wießner S, Das A, Nakason C (2021) Internal Polymerization of Epoxy Group of Epoxidized Natural Rubber by Ferric Chloride and Formation of Strong Network Structure. Polymers 13(23):4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Silverstein RM, Webster FX, Kiemle DJ, Bryce DL (2005) Spectrometric Identification of Organic Compounds. John Wiley & Sons Inc, New York

    Google Scholar 

  39. Krainoi A, Kummerlöwe C, Nakaramontri Y, Vennemann N, Pichaiyut S, Wisunthorn S, Nakason C (2018) Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polym Test 66:122–136

    Article  CAS  Google Scholar 

  40. Payne AR, Whittaker RE (1971) Low strain dynamic properties of filled rubbers. Rubber Chem Technol 44:440–478

    Article  CAS  Google Scholar 

  41. Sarkawi SS, Dierkes WK, Noordermeer JWM (2014) Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM network visualization. Eur Polym J 54:118–127

    Article  CAS  Google Scholar 

  42. Wolff S, Wang MJ (1993) In: Donnet JB, Bansal RC, Wang MJ (eds). Carbon black reinforcement of elastomers. Carbon Black: Science and Technology, Marcel Dekker Inc., New York, p 290

  43. Roychoudhury A, De PP (1995) Elastomer–carbon black interaction: Influence of elastomer chemical structure and carbon black surface chemistry on bound rubber formation. J Appl Polym Sci 55:9–15

    Article  CAS  Google Scholar 

  44. Mohapatra S, Nando GB (2015) Analysis of carbon black–reinforced cardanol-modified natural rubber compounds. Rub Chem Tech 88(2):289–309

    Article  CAS  Google Scholar 

  45. Niedermeier W, Fröhlich J, Luginsland HD (2002) Reinforcement mechanism in the rubber matrix by active fillers. KGK-Kaut Gum Kunst 55:356–366

    CAS  Google Scholar 

  46. Luo T, Wang Q (2021) Effects of graphite on electrically conductive cementitious composite properties: A Review. Materials 14(17):4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Earp B, Dunn D, Phillips J, Agrawal R, Ansell T, Aceves P, De Rosa I, Xin W, Luhrs C (2020) Enhancement of electrical conductivity of carbon nanotube sheets through copper addition using reduction expansion synthesis. Mater Res Bull 131:110969

    Article  CAS  Google Scholar 

  48. Zare Y, Rhee KY (2020) Calculation of the electrical conductivity of polymer nanocomposites assuming the interphase layer surrounding carbon nanotubes. Polymer 12(2):404

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge full financial support from the PSU NR-IRI (Natural Rubber Innovation Research Institute), Contract no. SIT591146S. In addition, Prince of Songkla University, Surat Thani Campus, Thailand is acknowledged for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charoen Nakason.

Ethics declarations

Conflict of interest

The authors declares that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichaiyut, S., Kitisavetjit, W. & Nakason, C. Synergistic effects of graphite and carbon nanotube hybrid fillers on key properties of epoxidized natural rubber nanocomposites. J Polym Res 30, 412 (2023). https://doi.org/10.1007/s10965-023-03799-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03799-z

Keywords

Navigation