Skip to main content
Log in

Enhancing curing, mechanical and electrical properties of epoxidized natural rubber nanocomposites with graphene and carbon nanotubes hybrid fillers

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of incorporating a combination of hybrid carbon fillers, graphene (GP), and carbon nanotubes (CNT) into epoxidized natural rubber with 25 mol% epoxidations (ENR-25) nanocomposites was investigated. The results demonstrated significant effects of CNT incorporation in ENR-25/GP–CNT hybrid composites on the cure characteristics, including shorter scorch and cure times, lower activation energy, and higher torque difference as the CNT loading increased. Fourier Transform Infrared analysis revealed a decrease in absorption intensity at a wavenumber of 1115 cm−1 with increasing CNT loadings. This observation can be attributed to chemical interactions between the polar functional groups in the ENR molecules and the polar groups on the CNT surfaces. Additionally, the hybrid GP–CNT filler was found to improve the mechanical properties, such as modulus and hardness, of the ENR/GP–CNT hybrid composites. The crosslink densities of the hybrid composites were measured using the Flory–Rehner theory, showing an increasing trend with higher CNT loadings. This phenomenon can be explained by the formation of end-to-end connections between certain parts of the CNT and the GP, leading to the establishment of a three-dimensional filler network with strong interactions among the components. Consequently, this facilitates the good dispersion and distribution of CNT within the composites. The observed trends in the mechanical properties were consistent with an increasing Payne effect and electrical conductivity as the CNT loadings increased. Notably, it was found that the ENR/GP–CNT hybrid composites exhibited a low percolation threshold concentration of 2.34 phr of CNT, indicating that they behave as conductive rubber materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data and code availability

In response to legitimate requests, the authors will provide relevant data.

References

  1. Ruksakulpiwat C, Nuasaen S, Poonsawat C, Khansawai P (2008) Synthesis and modification of epoxidized natural rubber from natural rubber latex. Adv Mat Res 47:734–737. https://doi.org/10.4028/www.scientific.net/AMR.47-50.734

    Article  Google Scholar 

  2. Baker C, Gelling I (1987) Epoxidized natural rubber. Developments in rubber technology-4. Elsevier, New York. https://doi.org/10.1007/978-94-009-3435-1_3

    Book  Google Scholar 

  3. Nakaramontri Y, Nakason C, Kummerlöwe C, Vennemann N (2015) Influence of modified natural rubber on properties of natural rubber–carbon nanotube composites. Rubber Chem Technol 88:199–218. https://doi.org/10.5254/rct.14.85949

    Article  CAS  Google Scholar 

  4. Hong S-G, Chan C-K (2004) The curing behaviors of the epoxy/dicyanamide system modified with epoxidized natural rubber. Thermochim Acta 417:99–106. https://doi.org/10.1016/j.tca.2003.12.015

    Article  CAS  Google Scholar 

  5. Srirachya N, Kobayashi T, Boonkerd K (2017) An alternative crosslinking of epoxidized natural rubber with maleic anhydride. Key Eng Mater 748:84–90. https://doi.org/10.4028/www.scientific.net/KEM.748.84

    Article  Google Scholar 

  6. Pire M, Norvez S, Iliopoulos I, Le Rossignol B, Leibler L (2010) Epoxidized natural rubber/dicarboxylic acid self-vulcanized blends. Polymer 51:5903–5909. https://doi.org/10.1016/j.polymer.2010.10.023

    Article  CAS  Google Scholar 

  7. Fan Y, Fowler GD, Zhao M (2020) The past, present and future of carbon black as a rubber reinforcing filler: a review. J Clean Prod 247:119115. https://doi.org/10.1016/j.jclepro.2019.119115

    Article  CAS  Google Scholar 

  8. Das A, Kasaliwal GR, Jurk R, Boldt R, Fischer D, Stöckelhuber KW, Heinrich G (2012) Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: a comparative study. Compos Sci Technol 72:1961–1967. https://doi.org/10.1016/j.compscitech.2012.09.005

    Article  CAS  Google Scholar 

  9. Guo H, Ji P, Halász IZ et al (2020) Enhanced fatigue and durability properties of natural rubber composites reinforced with carbon nanotubes and graphene oxide. Materials 13:5746. https://doi.org/10.3390/ma13245746

    Article  CAS  Google Scholar 

  10. Pradhan B, Srivastava SK (2014) Synergistic effect of three-dimensional multi-walled carbon nanotube–graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber. Polym Int 63:1219–1228. https://doi.org/10.1002/pi.4627

    Article  CAS  Google Scholar 

  11. Yang B, Wang S, Song Z, Liu L, Li H, Li Y (2021) Molecular dynamics study on the reinforcing effect of incorporation of graphene/carbon nanotubes on the mechanical properties of swelling rubber. Polym Test 102:107337. https://doi.org/10.1016/j.polymertesting.2021.107337

    Article  CAS  Google Scholar 

  12. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224. https://doi.org/10.1038/nnano.2009.58

    Article  CAS  Google Scholar 

  13. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94:031901. https://doi.org/10.1063/1.3073717

    Article  CAS  Google Scholar 

  14. Hwangbo Y, Lee C-K, Kim S-M et al (2014) Fracture characteristics of monolayer CVD-graphene. Sci Rep 4:4439. https://doi.org/10.1038/srep04439

    Article  CAS  Google Scholar 

  15. Martins LG, Song Y, Zeng T, Dresselhaus MS, Kong J, Araujo PT (2013) Direct transfer of graphene onto flexible substrates. Proc Natl Acad Sci 110:17762–17767. https://doi.org/10.1073/pnas.1306508110

    Article  Google Scholar 

  16. Lv H, Wu H, Liu J et al (2013) High carrier mobility in suspended-channel graphene field effect transistors. Appl Phys Lett 103:193102. https://doi.org/10.1063/1.4828835

    Article  CAS  Google Scholar 

  17. Ghosh D, Calizo I, Teweldebrhan D et al (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92:151911. https://doi.org/10.1063/1.2907977

    Article  CAS  Google Scholar 

  18. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH Jr, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069. https://doi.org/10.1021/ja1072299

    Article  CAS  Google Scholar 

  19. Sa K, Mahakul PC, Subramanyam B, Raiguru J, Das S, Alam I, Mahanandia P (2018) Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites. IOP Conf Ser Mater Sci Eng 338:012055. https://doi.org/10.1088/1757-899X/338/1/012055

    Article  Google Scholar 

  20. Zulhairun AK, Abdullah MS, Ismail AF, Goh PS (2019) Graphene and CNT technology. In: Basile A, Curcio E, Inamuddin (eds) Current trends and future developments on (bio-) membranes. Elsevier, New York, pp 3–26. https://doi.org/10.1016/B978-0-12-813551-8.00001-2

    Chapter  Google Scholar 

  21. Krainoi A, Kummerlöwe C, Nakaramontri Y, Vennemann N, Pichaiyut S, Wisunthorn S, Nakason C (2018) Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polym Test 66:122–136. https://doi.org/10.1016/j.polymertesting.2018.01.003

    Article  CAS  Google Scholar 

  22. Liu Y, Huang J, Zhou F, Ni L, Shen Y, Liu W, Meng F (2021) A mini-review of three-dimensional network topological structure nanocomposites: preparation and mechanical properties. Nanotechnol Rev 10:1425–1437. https://doi.org/10.1515/ntrev-2021-0094

    Article  CAS  Google Scholar 

  23. Szeluga U, Kumanek B, Trzebicka B (2015) Synergy in hybrid polymer/nanocarbon composites. A review. Compos A Appl Sci Manuf 73:204–231. https://doi.org/10.1016/j.compositesa.2015.02.021

    Article  CAS  Google Scholar 

  24. Nam K-H, Yu J, You N-H, Han H, Ku B-C (2017) Synergistic toughening of polymer nanocomposites by hydrogen-bond assisted three-dimensional network of functionalized graphene oxide and carbon nanotubes. Compos Sci Technol 149:228–234. https://doi.org/10.1016/j.compscitech.2017.06.025

    Article  CAS  Google Scholar 

  25. Siriwas T, Pichaiyut S, Susoff M, Petersen S, Nakason C (2023) Graphene-filled natural rubber nanocomposites: influence of the composition on curing, morphological, mechanical, and electrical properties. Express Polym Lett. https://doi.org/10.3144/expresspolymlett.2023.61

    Article  Google Scholar 

  26. Yangthong H, Wisunthorn S, Pichaiyut S, Nakason C (2019) Novel epoxidized natural rubber composites with geopolymers from fly ash waste. Waste Manag 87:148–160. https://doi.org/10.1016/j.wasman.2019.02.013

    Article  CAS  Google Scholar 

  27. Flory PJ, Rehner J Jr (1943) Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J Chem Phys 11:512–520. https://doi.org/10.1063/1.1723791

    Article  CAS  Google Scholar 

  28. Flory PJ (1941) Molecular size distribution in three dimensional polymers. II. Trifunctional branching units. J Am Chem Soc 63:3091–3096. https://doi.org/10.1021/ja01856a062

    Article  CAS  Google Scholar 

  29. Ojogbo E, Tzoganakis C, Mekonnen TH (2021) Effect of extrusion, batch-mixing, and co-coagulation on the dispersion of CNCs in natural rubber-CNC nanocomposites. Compos A Appl Sci Manuf 149:106580. https://doi.org/10.1016/j.compositesa.2021.106580

    Article  CAS  Google Scholar 

  30. Payne A (1965) Effect of dispersion on the dynamic properties of filler-loaded rubbers. J Appl Polym Sci 9:2273–2284. https://doi.org/10.1002/app.1965.070090619

    Article  CAS  Google Scholar 

  31. Krainoi A, Kummerlöwe C, Nakaramontri Y et al (2020) Novel natural rubber composites based on silver nanoparticles and carbon nanotubes hybrid filler. Polym Compos 41:443–458. https://doi.org/10.1002/pc.25378

    Article  CAS  Google Scholar 

  32. Du F, Fischer JE, Winey KI (2003) Coagulation method for preparing single-walled carbon nanotube/poly (methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J Polym Sci B Polym Phys 41:3333–3338. https://doi.org/10.1002/polb.10701

    Article  CAS  Google Scholar 

  33. Omonov TS, Curtis JM (2016) Plant oil-based epoxy intermediates for polymers. In: Madbouly SA, Zhang C, Kessler MR (eds) Bio-based plant oil polymers and composites. Elsevier, New York, pp 99–125. https://doi.org/10.1016/B978-0-323-35833-0.00007-4

    Chapter  Google Scholar 

  34. Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Hoboken, pp 10815–10837. https://doi.org/10.1002/9780470027318.a5606

    Chapter  Google Scholar 

  35. Krainoi A, Kummerlöwe C, Vennemann N, Nakaramontri Y, Pichaiyut S, Nakason C (2019) Effect of carbon nanotubes decorated with silver nanoparticles as hybrid filler on properties of natural rubber nanocomposites. J Appl Polym Sci 136:47281. https://doi.org/10.1002/app.47281

    Article  CAS  Google Scholar 

  36. Kitisavetjit W, Nakaramontri Y, Pichaiyut S, Wisunthorn S, Nakason C, Kiatkamjornwong S (2021) Influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites. Polym Test 93:106981. https://doi.org/10.1016/j.polymertesting.2020.106981

    Article  CAS  Google Scholar 

  37. Yazid H, Anwar UA, Zaubidah AS et al (2022) A combined method to probe the behaviour of the filler in polymer blend nanocomposites via X-ray diffraction and thermal measurement. Nanostruct Nanoobj 32:100906. https://doi.org/10.1016/j.nanoso.2022.100906

    Article  CAS  Google Scholar 

  38. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502. https://doi.org/10.1103/PhysRevLett.87.215502

    Article  CAS  Google Scholar 

  39. Nakaramontri Y, Kummerlöwe C, Nakason C, Vennemann N (2014) Effect of modified natural rubber and functionalization of carbon nanotubes on properties of natural rubber composites. Adv Mat Res 844:301–304. https://doi.org/10.4028/www.scientific.net/AMR.844.301

    Article  CAS  Google Scholar 

  40. Hernández M, del Mar BM, Verdejo R, Ezquerra TA, López-Manchado MA (2012) Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol 73:40–46. https://doi.org/10.1016/j.compscitech.2012.08.012

    Article  CAS  Google Scholar 

  41. Pongdong W, Nakason C, Kummerlöwe C, Vennemann N (2015) Influence of filler from a renewable resource and silane coupling agent on the properties of epoxidized natural rubber vulcanizates. J Chem. https://doi.org/10.1155/2015/796459

    Article  Google Scholar 

  42. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886. https://doi.org/10.1246/bcsj.38.1881

    Article  CAS  Google Scholar 

  43. Zhang X, Niu K, Song W, Yan S, Zhao X, Lu Y, Zhang L (2019) The effect of epoxidation on strain-induced crystallization of epoxidized natural rubber. Macromol Rapid Commun 40:1900042. https://doi.org/10.1002/marc.201900042

    Article  CAS  Google Scholar 

  44. Damampai K, Pichaiyut S, Dasa A, Nakason C (2022) Internal polymerization of epoxy group of epoxidized natural rubber by ferric chloride filled with carbon nanotubes: mechanical, morphological, thermal and electrical properties of rubber vulcanizates. Express Polym Lett 16:812–826. https://doi.org/10.3144/expresspolymlett.2022.60

    Article  CAS  Google Scholar 

  45. Chenal J-M, Gauthier C, Chazeau L, Guy L, Bomal Y (2007) Parameters governing strain induced crystallization in filled natural rubber. Polymer 48:6893–6901. https://doi.org/10.1016/j.polymer.2007.09.023

    Article  CAS  Google Scholar 

  46. Kraus G (1963) Swelling of filler-reinforced vulcanizates. J Appl Polym Sci 7:861–871. https://doi.org/10.1002/app.1963.070070306

    Article  CAS  Google Scholar 

  47. Yaragalla S, Meera A, Kalarikkal N, Thomas S (2015) Chemistry associated with natural rubber–graphene nanocomposites and its effect on physical and structural properties. Ind Crops Prod 74:792–802. https://doi.org/10.1016/j.indcrop.2015.05.079

    Article  CAS  Google Scholar 

  48. Yang G, Liao Z, Yang Z, Tang Z, Guo B (2015) Effects of substitution for carbon black with graphene oxide or graphene on the morphology and performance of natural rubber/carbon black composites. J Appl Polym Sci. https://doi.org/10.1002/app.41832

    Article  Google Scholar 

  49. Meera A, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113:17997–18002. https://doi.org/10.1021/jp9020118

    Article  CAS  Google Scholar 

  50. Ponnamma D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343–10353. https://doi.org/10.1039/c3sm51978c

    Article  CAS  Google Scholar 

  51. Dong B, Liu C, Lu Y, Wu Y (2015) Synergistic effects of carbon nanotubes and carbon black on the fracture and fatigue resistance of natural rubber composites. J Appl Polym Sci. https://doi.org/10.1002/app.42075

    Article  Google Scholar 

  52. Vavouliotis A, Fiamegou E, Karapappas P, Psarras G, Kostopoulos V (2010) DC and AC conductivity in epoxy resin/multiwall carbon nanotubes percolative system. Polym Compos 31:1874–1880. https://doi.org/10.1002/pc.20981

    Article  CAS  Google Scholar 

  53. Dalmas F, Dendievel R, Chazeau L, Cavaillé J-Y, Gauthier C (2006) Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks. Acta Mater 54:2923–2931. https://doi.org/10.1016/j.actamat.2006.02.028

    Article  CAS  Google Scholar 

  54. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41:1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  55. Bhattacharyya S, Sinturel C, Bahloul O, Saboungi M-L, Thomas S, Salvetat J-P (2008) Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46:1037–1045. https://doi.org/10.1016/j.carbon.2008.03.011

    Article  CAS  Google Scholar 

  56. Sohi N, Bhadra S, Khastgir D (2011) The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon 49:1349–1361. https://doi.org/10.1016/j.carbon.2010.12.001

    Article  CAS  Google Scholar 

  57. Ravindran AR, Feng C, Huang S, Wang Y, Zhao Z, Yang J (2018) Effects of graphene nanoplatelet size and surface area on the AC electrical conductivity and dielectric constant of epoxy nanocomposites. Polymers 10:477. https://doi.org/10.3390/polym10050477

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support by the National Research Council of Thailand (NRCT) under Grant No. NRCT-RGJ63019-159. Moreover, Faculty of Science and Industrial Technology, Prince of Songkla University Surat Thani campus and University of Applied Science, Osnabrück, Germany are highly acknowledged for access to facilities and equipment.

Author information

Authors and Affiliations

Authors

Contributions

TS was performed investigation, analysis, and wrote the original draft. SP1 was managed the data and contributed to writing the review. MS was provided supervision, supplied laboratory facilities, and confirmed the results. SP2 was interpreted the findings. CN was supervised the project, validated the results, reviewed and edited the manuscript, and contributed to its completion.

Corresponding author

Correspondence to Charoen Nakason.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siriwas, T., Pichaiyut, S., Susoff, M. et al. Enhancing curing, mechanical and electrical properties of epoxidized natural rubber nanocomposites with graphene and carbon nanotubes hybrid fillers. J Mater Sci 58, 15676–15695 (2023). https://doi.org/10.1007/s10853-023-09003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09003-3

Navigation